Probabilistic approach to rock fall hazard assessment: potential of historical data analysis

Author:

Dussauge-Peisser C.,Helmstetter A.,Grasso J.-R.,Hantz D.,Desvarreux P.,Jeannin M.,Giraud A.

Abstract

Abstract. We study the rock fall volume distribution for three rock fall inventories and we fit the observed data by a power-law distribution, which has recently been proposed to describe landslide and rock fall volume distributions, and is also observed for many other natural phenomena, such as volcanic eruptions or earthquakes. We use these statistical distributions of past events to estimate rock fall occurrence rates on the studied areas. It is an alternative to deterministic approaches, which have not proved successful in predicting individual rock falls. The first one concerns calcareous cliffs around Grenoble, French Alps, from 1935 to 1995. The second data set is gathered during the 1912–1992 time window in Yosemite Valley, USA, in granite cliffs. The third one covers the 1954–1976 period in the Arly gorges, French Alps, with metamorphic and sedimentary rocks. For the three data sets, we find a good agreement between the observed volume distributions and a fit by a power-law distribution for volumes larger than 50 m3 , or 20 m3 for the Arly gorges. We obtain similar values of the b exponent close to 0.45 for the 3 data sets. In agreement with previous studies, this suggests, that the b value is not dependant on the geological settings. Regarding the rate of rock fall activity, determined as the number of rock fall events with volume larger than 1 m3 per year, we find a large variability from one site to the other. The rock fall activity, as part of a local erosion rate, is thus spatially dependent. We discuss the implications of these observations for the rock fall hazard evaluation. First, assuming that the volume distributions are temporally stable, a complete rock fall inventory allows for the prediction of recurrence rates for future events of a given volume in the range of the observed historical data. Second, assuming that the observed volume distribution follows a power-law distribution without cutoff at small or large scales, we can extrapolate these predictions to events smaller or larger than those reported in the data sets. Finally, we discuss the possible biases induced by the poor quality of the rock fall inventories, and the sensibility of the extrapolated predictions to variations in the parameters of the power law.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3