Isoprene chemistry in pristine and polluted Amazon environments: Eulerian and Lagrangian model frameworks and the strong bearing they have on our understanding of surface ozone and predictions of rainforest exposure to this priority pollutant
Author:
Levine J. G., MacKenzie A. R.ORCID, Squire O. J., Archibald A. T.ORCID, Griffiths P. T.ORCID, Abraham N. L., Pyle J. A.ORCID, Oram D. E., Forster G., Brito J. F.ORCID, Lee J. D.ORCID, Hopkins J. R.ORCID, Lewis A. C., Bauguitte S. J. B., Demarco C. F., Artaxo P.ORCID, Messina P.ORCID, Lathière J., Hauglustaine D. A., House E., Hewitt C. N.ORCID, Nemitz E.ORCID
Abstract
Abstract. This study explores our ability to simulate the atmospheric chemistry stemming from isoprene emissions in pristine and polluted regions of the Amazon basin. We confront two atmospheric chemistry models – a global, Eulerian chemistry-climate model (UM-UKCA) and a trajectory-based Lagrangian model (CiTTyCAT) – with recent airborne measurements of atmospheric composition above the Amazon made during the SAMBBA campaign of 2012. The simulations with the two models prove relatively insensitive to the chemical mechanism employed; we explore one based on the Mainz Isoprene Mechanism, and an updated one that includes changes to the chemistry of first generation isoprene nitrates (ISON) and the regeneration of hydroxyl radicals via the formation of hydroperoxy-aldehydes (HPALDS) from hydroperoxy radicals (ISO2). In the Lagrangian model, the impact of increasing the spatial resolution of trace gas emissions employed from 3.75° × 2.5° to 0.1° × 0.1° varies from one flight to another, and from one chemical species to another. What consistently proves highly influential on our simulations, however, is the model framework itself – how the treatment of transport, and consequently mixing, differs between the two models. The lack of explicit mixing in the Lagrangian model yields variability in atmospheric composition more reminiscent of that exhibited by the measurements. In contrast, the combination of explicit (and implicit) mixing in the Eulerian model removes much of this variability but yields better agreement with the measurements overall. We therefore explore a simple treatment of mixing in the Lagrangian model that, drawing on output from the Eulerian model, offers a compromise between the two models. We use this Lagrangian/Eulerian combination, in addition to the separate Eulerian and Lagrangian models, to simulate ozone at a site in the boundary layer downwind of Manaus, Brazil. The Lagrangian/Eulerian combination predicts a value for an AOT40-like accumulated exposure metric of around 1000 ppbv h, compared to just 20 ppbv h with the Eulerian model. The model framework therefore has considerable bearing on our understanding of the frequency at which, and the duration for which, the rainforest is exposed to damaging ground-level ozone concentrations.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Reference72 articles.
1. Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The effects of tropospheric ozone on net primary productivity and implications for climate change, Annu. Rev. Plant Biol., 63, 637–61, 2012. 2. Archibald, A. T., Cooke, M. C., Utembe, S. R., Shallcross, D. E., Derwent, R. G., and Jenkin, M. E.: Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene, Atmos. Chem. Phys., 10, 8097–8118, https://doi.org/10.5194/acp-10-8097-2010, 2010a. 3. Archibald, A. T., Jenkin, M. E., and Shallcross, D. E.: An isoprene mechanism intercomparison, Atmos. Environ., 44, 5356–5364, https://doi.org/10.1016/j.atmosenv.2009.09.016, 2010b. 4. Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmos. Chem. Phys., 8, 4605–4620, https://doi.org/10.5194/acp-8-4605-2008, 2008. 5. Avnery, S., Mauzerall, D., Liu, J., and Horowitz, L.: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage, Atmos. Environ., 45, 2284–2296, 2011.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|