Successes and challenges of measuring and modeling atmospheric mercury at the part per quadrillion level: a critical review

Author:

Sexauer Gustin M.,Amos H. M.,Huang J.,Miller M. B.,Heidecorn K.

Abstract

Abstract. Measurements of atmospheric mercury (Hg) are being increasingly incorporated into monitoring networks worldwide. These data are expected to support and inform regulatory decision making aimed at protecting human and wildlife health. Here we critically review current efforts to measure Hg concentrations in the atmosphere and interpret these data with Hg models. There are three operationally defined forms of atmospheric Hg: Gaseous Elemental (GEM), Gaseous Oxidized (GOM), and Particulate Bound (PBM). While there is relative confidence in GEM measurements, GOM and PBM are less well understood. Field and laboratory investigations suggest the methods to measure GOM and PBM are impacted by analytical interferences that vary with environmental setting (e.g., ozone, relative humidity) and GOM concentrations can be biased low by a factor of 1.6–12 times depending on the chemical compound. Importantly, efforts to understand the fundamental limitations of atmospheric Hg measurement methods have provided clear evidence that the composition of GOM (e.g., HgBr2, HgCl2, HgBrOH) varies across space and time. This has significant implications for refining existing measurement methods and developing new ones, model/measurement comparisons, model development, and assessing trends. In addition, unclear features of previously published data may now be re-examined and possibly explained, which we present as a case study. Lastly, we outline recommendations for needed research directions as the Hg field moves forward. Priorities include GOM and PBM calibration systems, identification of GOM compounds in ambient air, and identification of redox mechanisms and associated rate coefficients. Determination of a quantitative correction factor for biased GOM and PBM data is also needed to facilitate model-measurement comparisons.

Funder

Division of Atmospheric and Geospace Sciences

Publisher

Copernicus GmbH

Reference106 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3