Impact of ozone observations on the structure of a tropical cyclone using coupled atmosphere–chemistry data assimilation
Author:
Lim S.ORCID, Park S. K.ORCID, Zupanski M.
Abstract
Abstract. Since the air quality forecast is related to both chemistry and meteorology, the coupled atmosphere–chemistry data assimilation (DA) system is essential to air quality forecasting. Ozone (O3) plays an important role in chemical reactions and is usually assimilated in chemical DA. In tropical cyclones (TCs), O3 usually shows a lower concentration inside the eyewall and an elevated concentration around the eye, impacting atmospheric as well as chemical variables. To identify the impact of O3 observations on TC structure, including atmospheric and chemical information, we employed the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) with an ensemble-based DA algorithm – the maximum likelihood ensemble filter (MLEF). For a TC case that occurred over the East Asia, our results indicate that the ensemble forecast is reasonable, accompanied with larger background state uncertainty over the TC, and also over eastern China. Similarly, the assimilation of O3 observations impacts atmospheric and chemical variables near the TC and over eastern China. The strongest impact on air quality in the lower troposphere was over China, likely due to the pollution advection. In the vicinity of the TC, however, the strongest impact on chemical variables adjustment was at higher levels. The impact on atmospheric variables was similar in both over China and near the TC. The analysis results are validated using several measures that include the cost function, root-mean-squared error with respect to observations, and degrees of freedom for signal (DFS). All measures indicate a positive impact of DA on the analysis – the cost function and root mean square error have decreased by 16.9 and 8.87%, respectively. In particular, the DFS indicates a strong positive impact of observations in the TC area, with a weaker maximum over northeast China.
Funder
Korea Environmental Industry and Technology Institute National Research Foundation of Korea National Science Foundation National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Reference34 articles.
1. Apodaca, K., Zupanski, M., DeMaria, M., Knaff, J. A., and Grasso, L. D.: Development of a hybrid variational-ensemble data assimilation technique for observed lightning tested in a mesoscale model, Nonlin. Processes Geophys., 21, 1027–1041, https://doi.org/10.5194/npg-21-1027-2014, 2014. 2. Buehner, M.: Ensemble-derived stationary and flow-dependent background-error covariances, Q. J. Roy. Meteorol. Soc., 131, 1013–1043, 2005. 3. Carmichael, G. R., Sandu, A., Chai, T., Daescu, D. N., Constantinescu, E. M., and Tang, Y.: Predicting air quality: improvements through advanced methods to integrate models and measurements, J. Comput. Phys., 227, 3540–3571, 2008. 4. Carsey, T. P. and Willoughby, H. E.: Ozone measurements from eyewall transects of two Atlantic tropical cyclones, Mon. Weather Rev., 133, 166–174, 2005. 5. Chapman, E. G., Gustafson Jr., W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and Fast, J. D.: Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources, Atmos. Chem. Phys., 9, 945–964, https://doi.org/10.5194/acp-9-945-2009, 2009.
|
|