Impact of ozone observations on the structure of a tropical cyclone using coupled atmosphere–chemistry data assimilation

Author:

Lim S.ORCID,Park S. K.ORCID,Zupanski M.

Abstract

Abstract. Since the air quality forecast is related to both chemistry and meteorology, the coupled atmosphere–chemistry data assimilation (DA) system is essential to air quality forecasting. Ozone (O3) plays an important role in chemical reactions and is usually assimilated in chemical DA. In tropical cyclones (TCs), O3 usually shows a lower concentration inside the eyewall and an elevated concentration around the eye, impacting atmospheric as well as chemical variables. To identify the impact of O3 observations on TC structure, including atmospheric and chemical information, we employed the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) with an ensemble-based DA algorithm – the maximum likelihood ensemble filter (MLEF). For a TC case that occurred over the East Asia, our results indicate that the ensemble forecast is reasonable, accompanied with larger background state uncertainty over the TC, and also over eastern China. Similarly, the assimilation of O3 observations impacts atmospheric and chemical variables near the TC and over eastern China. The strongest impact on air quality in the lower troposphere was over China, likely due to the pollution advection. In the vicinity of the TC, however, the strongest impact on chemical variables adjustment was at higher levels. The impact on atmospheric variables was similar in both over China and near the TC. The analysis results are validated using several measures that include the cost function, root-mean-squared error with respect to observations, and degrees of freedom for signal (DFS). All measures indicate a positive impact of DA on the analysis – the cost function and root mean square error have decreased by 16.9 and 8.87%, respectively. In particular, the DFS indicates a strong positive impact of observations in the TC area, with a weaker maximum over northeast China.

Funder

Korea Environmental Industry and Technology Institute

National Research Foundation of Korea

National Science Foundation

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3