Analysis of CO<sub>2</sub> mole fraction data: first evidence of large-scale changes in CO<sub>2</sub> uptake at high northern latitudes

Author:

Barlow J. M.,Palmer P. I.ORCID,Bruhwiler L. M.,Tans P.

Abstract

Abstract. Atmospheric variations of carbon dioxide (CO2) mole fraction reflect changes in atmospheric transport and regional patterns of surface emission and uptake. We report new estimates for changes in the phase and amplitude of observed high northern latitude CO2 seasonal variations, indicative of biospheric changes, by spectrally decomposing multi-decadal records of surface CO2 mole fraction using a wavelet transform to isolate the changes in the observed seasonal cycle. We also perform similar analysis of the first time derivative of CO2 mole fraction, ΔtCO2, that is a crude proxy for changes in CO2 flux. Using numerical experiments, we quantify the aliasing error associated with independently identifying trends in phase and peak uptake and release to be 10–25%, with the smallest biases in phase associated with the analysis of ΔtCO2. We report our analysis from Barrow, Alaska (BRW) during 1973–2013, which is representative of the broader Arctic region. We determine an amplitude trend of 0.09 ± 0.02 ppm yr−1, which is consistent with previous work. Using ΔtCO2 we determine estimates for the timing of the onset of net uptake and release of CO2 of −0.14 ± 0.14 and −0.25 ± 0.08 days yr−1, respectively, and a corresponding uptake period of −0.11 ± 0.16 days yr−1, which are significantly different to previously reported estimates. We find that the wavelet transform method has significant skill in characterizing changes in the peak uptake and release. We find a trend of 0.65 ± 0.34% (p< 0.01) and 0.42 ± 0.34% (p<0.05) for rates of peak uptake and release, respectively. Our analysis does not provide direct evidence about the balance between uptake and release of carbon, but changes in the peak uptake and release together with an invariant growing period length provides indirect evidence that high northern latitude ecosystems are progressively taking up more carbon.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3