Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic

Author:

Coopman Q.,Garrett T. J.,Riedi J.,Eckhardt S.ORCID,Stohl A.

Abstract

Abstract. The properties of clouds in the Arctic can be altered by long-range aerosol transport to the region. The goal of this study is to use satellite, tracer transport model, and meteorological data sets to determine the effects of pollution on cloud microphysics due only to pollution itself and not to the meteorological state. Here, A-Train, POLDER-3 and MODIS satellite instruments are used to retrieve low-level liquid cloud microphysical properties over the Arctic between 2008 and 2010. Cloud retrievals are co-located with simulated pollution represented by carbon-monoxide concentrations from the FLEXPART tracer transport model. The sensitivity of clouds to pollution plumes – including aerosols – is constrained for cloud liquid water path, temperature, altitude, specific humidity, and lower tropospheric stability (LTS). We define an Indirect Effect (IE) parameter from the ratio of relative changes in cloud microphysical properties to relative variations in pollution concentrations. Retrievals indicate that, depending on the meteorological regime, IE parameters range between 0 and 0.34 for the cloud droplet effective radius, and between −0.10 and 0.35 for the optical depth, with average values of 0.12 ± 0.02 and 0.15 ± 0.02 respectively. The IE parameter increases with increasing specific humidity and LTS. Further, the results suggest that for a given set of meteorological conditions, the liquid water path of arctic clouds does not respond strongly to pollution. Or, not constraining sufficiently for meteorology may lead to artifacts that exaggerate the magnitude of the aerosol indirect effect. The converse is that the response of arctic clouds to pollution does depend on the meteorologic state. Finally, we find that IE values are highest when pollution concentrations are low, and that they depend on the source of pollution.

Funder

Division of Polar Programs

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3