Characterization of total ecosystem scale biogenic VOC exchange at a Mediterranean oak-hornbeam forest
Author:
Schallhart S., Rantala P.ORCID, Nemitz E.ORCID, Mogensen D., Tillmann R.ORCID, Mentel T. F.ORCID, Rinne J.ORCID, Ruuskanen T. M.
Abstract
Abstract. Recently, the number and amount of biogenically emitted volatile organic compounds (VOCs) has been discussed vigorously. Depending on the ecosystem the published number varies between a dozen and several hundred compounds. We present ecosystem exchange fluxes from a mixed oak-hornbeam forest in the Po Valley, Italy. The fluxes were measured by a proton transfer reaction-time-of-flight (PTR-ToF) mass spectrometer and calculated by the eddy covariance (EC) method. Detectable fluxes were observed for twelve compounds, dominated by isoprene, which comprised over 65 % of the total flux emission. The daily average of the total VOC emission was 9.5 nmol m-2 s-1. Methanol had the highest concentration and accounted for the largest deposition. Methanol seemed to be deposited to dew, as the deposition happened in the early morning, right after the calculated surface temperature came closest to the calculated dew point temperature. We estimated that up to 27 % of the upward flux of methyl vinyl ketone (MVK) and methacrolein (MACR) originated from atmospheric oxidation of isoprene. A comparison between two flux detection methods (classical/visual and automated) was made. Their respective advantages and disadvantages were discussed and the differences in their results shown. Both provide comparable results; however we recommend the automated method with a compound filter, which combines the fast analysis and better flux detection, without the overestimation due to double counting.
Funder
Seventh Framework Programme Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta
Publisher
Copernicus GmbH
Reference90 articles.
1. Acton, W. J. F., Schallhart, S., Langford, B., Valach, A., Rantala, P., Fares, S., Carriero, G., Tillmann, R., Tomlinson, S. J., Dragosits, Gianelle, D., U., Hewitt, C. N., and Nemitz, E.: Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy, submitted to Atmos. Chem. Phys Discuss., 2015. 2. Andronache, C., Chameides, W. L., Rodgers, M. O., Martinez, J., Zimmerman, P., and Greenberg, J.: Vertical distribution of isoprene in the lower boundary layer of the rural and urban southern United States, J. Geophys. Res., 99, 16989–16999, https://doi.org/10.1029/94JD01027, 1994. 3. Bloss, C., Wagner, V., Bonzanini, A., Jenkin, M. E., Wirtz, K., Martin-Reviejo, M., and Pilling, M. J.: Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data, Atmos. Chem. Phys., 5, 623–639, https://doi.org/10.5194/acp-5-623-2005, 2005. 4. Boy, M., Mogensen, D., Smolander, S., Zhou, L., Nieminen, T., Paasonen, P., Plass-Dülmer, C., Sipilä, M., Petäjä, T., Mauldin, L., Berresheim, H., and Kulmala, M.: Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations, Atmos. Chem. Phys., 13, 3865–3879, https://doi.org/10.5194/acp-13-3865-2013, 2013. 5. Businger, J. A. and Oncley, S. P.: Flux measurement with conditional sampling, J. Atmos. Ocean. Tech., 7, 349–352, 1990.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|