Deposition and immersion mode nucleation of ice by three distinct samples of volcanic ash using Raman spectroscopy
Author:
Schill G. P.ORCID, Genareau K., Tolbert M. A.
Abstract
Abstract. Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui euption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225–235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.
Funder
National Science Foundation
Publisher
Copernicus GmbH
Reference54 articles.
1. Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013. 2. Baustian, K. J., Wise, M. E., and Tolbert, M. A.: Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles, Atmos. Chem. Phys., 10, 2307–2317, https://doi.org/10.5194/acp-10-2307-2010, 2010. 3. Bingemer, H., Klein, H., Ebert, M., Haunold, W., Bundke, U., Herrmann, T., Kandler, K., Müller-Ebert, D., Weinbruch, S., Judt, A., Wéber, A., Nillius, B., Ardon-Dryer, K., Levin, Z., and Curtius, J.: Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume, Atmos. Chem. Phys., 12, 857–867, https://doi.org/10.5194/acp-12-857-2012, 2012. 4. Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., Condliffe, E., and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust, Atmos. Chem. Phys., 12, 287–307, https://doi.org/10.5194/acp-12-287-2012, 2012. 5. Brown, R. J., Bonadonna, C., and Durant, A. J.: A review of volcanic ash aggregation, Phys. Chem. Earth, 45–46, 65–78, https://doi.org/10.1016/j.pce.2011.11.001, 2012.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|