Hygroscopic behavior of NaCl–MgCl<sub>2</sub> mixture particles as nascent sea-spray aerosol surrogates and observation of efflorescence during humidifying process

Author:

Gupta D.ORCID,Eom H.-J.,Cho H.-R.,Ro C.-U.

Abstract

Abstract. NaCl and MgCl2 are the two major constituents of seawater, so NaCl–MgCl2 mixture particles can be a better representative of sea-spray aerosols (SSAs) than pure NaCl. However, there have been very few hygroscopic studies of pure MgCl2 and NaCl-MgCl2 mixture aerosol particles despite the MgCl2 moiety playing a major role in the hygroscopic behavior of nascent SSAs. Laboratory-generated pure MgCl2 and NaCl-MgCl2 mixture aerosol particles with 12 mixing ratios (0.01 ≤ mole fraction of NaCl (XNaCl) ≤ 0.9) were examined systematically by optical microscopy, in-situ Raman microspectrometry (RMS), and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX) elemental X-ray mapping to observe their hygroscopic behavior, derive the experimental phase diagrams, and obtain the chemical micro-structures. Dry-deposited MgCl2·6H2O particles exhibited a deliquescence relative humidity (DRH) of ∼ 33.0 % and an efflorescence RH (ERH) of 10.8−9.1 %, whereas the nebulized pure MgCl2 and MgCl2-dominant particles of XNaCl = 0.026 (eutonic) and 0.01 showed single-stage transitions at DRH of ∼ 15.9 % and ERH of 10.1−3.2 %. The characteristic OH-stretching Raman signatures indicated the crystallization of MgCl2·4H2O at low RHs, suggesting that the kinetic barrier to MgCl2·6H2O crystallization is not overcome in the timescale of the dehydration measurements. The NaCl-MgCl2 mixture particles of 0.05 ≤ XNaCl ≤ 0.9 generally showed two-stage deliquescence: first at the mutual DRH (MDRH) of ~ 15.9 %; and second with the complete dissolution of NaCl at the second DRHs depending on the mixing ratios, resulting in a phase diagram composed of three distinct phases. During dehydration, most particles of 0.05 ≤ XNaCl ≤ 0.9 exhibited two-stage efflorescence: first, by the homogeneous nucleation of NaCl; and second, at mutual ERH (MERH) of ∼ 10.4–2.9 %, by the crystallization of the MgCl2·4H2O moiety, also resulting in three distinct phases. Interestingly, particles of XNaCl = 0.1 and 0.2 frequently showed 3 different types of mutual deliquescence behaviors. The first type exhibited an MDRH at ∼ 15.9 %. The second exhibited the first MDRH at ∼ 15.9 %, efflorescence to MgCl2·6H2O (confirmed by in-situ RMS) at RH of ∼ 16.1–25.0 %, and a second MDRH at ∼ 33.0 %. The third showed an MDRH at ∼ 33.0 %. Some particles of XNaCl = 0.1 and 0.2 also exhibited higher MERHs = 15.2–11.9 % and 23.7−15.3 %, respectively, forming MgCl2·6H2O. These observations suggest that the presence of sufficient condensed water and optimally sized crystalline NaCl (XNaCl = 0.1 and 0.2) acting as heterogeneous nucleation seeds helps overcome the kinetic barrier, leading to the structural growth and crystallization of MgCl2·6H2O. SEM/EDX elemental X-ray mapping showed that the effloresced NaCl-rich particles contain homogeneously crystallized NaCl in the center, surrounded by MgCl2·4H2O. The observation of an aqueous phase over a wider RH range for NaCl−MgCl2 mixture particles indicates their more probable heterogeneous chemistry compared to pure NaCl particles as a nascent SSA surrogate.

Funder

National Research Foundation of Korea

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3