Two decades of water vapor measurements with the FISH fluorescence hygrometer: a review

Author:

Meyer J.,Rolf C.ORCID,Schiller C.,Rohs S.ORCID,Spelten N.,Afchine A.ORCID,Zöger M.,Sitnikov N.,Thornberry T. D.ORCID,Rollins A. W.,Bozóki Z.,Tátrai D.,Ebert V.ORCID,Kühnreich B.,Mackrodt P.,Möhler O.,Saathoff H.,Rosenlof K. H.ORCID,Krämer M.ORCID

Abstract

Abstract. The Fast In-situ Stratospheric Hygrometer (FISH) is an airborne Lyman-α photofragment fluorescence hygrometer for accurate and precise measurement of total water mixing ratios (WMR) (gas phase + evaporated ice) in the upper troposphere and lower stratosphere (UT/LS) since almost two decades. Here, we present a comprehensive review of the measurement technique, calibration procedure, accuracy and reliability of FISH. A crucial part for the FISH measurement quality is the regular calibration to a water vapor reference, namely the commercial frostpoint hygrometer DP30. In the frame of this work this frostpoint hygrometer is compared to German and British traceable metrological water standards and its accuracy is found to be 2–4%. Overall, in the range from 4–1000 ppmv, the total accuracy of FISH was found to be 6–8% as stated also in previous publications. For lower mixing ratios down to 1 ppmv, the uncertainty reaches a lower limit of 0.3 ppmv. For specific, non-atmospheric conditions, as set in experiments at the AIDA chamber – namely mixing ratios below 10 and above 100 ppmv in combination with high and low pressure conditions – the need to apply a modified FISH calibration evaluation has been identified. The new evaluation improves the agreement of FISH with other hygrometers to ± 10% accuracy in the respective mixing ratio ranges. Further, a quality check procedure for high total water measurements in cirrus clouds at high pressures (400–500 hPa) is introduced. The performance of FISH in the field is assessed by reviewing intercomparisons of FISH water vapor data with other in-situ and remote sensing hygrometers over the last two decades. We find that the agreement of FISH with the other hygrometers has improved over that time span from overall up to ±30% or more to about ±5–20% @ < 10 ppmv and to ±0–15% @ > 10 ppmv. As presented here, the robust and continuous calibration and operation procedures of the FISH instrument over the last two decades, establish the position of FISH as one of the core instruments for in-situ observations of water vapor in the UT/LS.

Publisher

Copernicus GmbH

Reference56 articles.

1. Buchholz, B.: Entwicklung, Primärvalidierung und Feldeinsatz neuartiger, kalibrierungsfreier Laser-Hygrometer für Forschungsflugzeuge, Dissertation, Technische Universität Darmstadt, 2014.

2. Dessler, A. E.: Clouds and water vapor in the Northern Hemisphere summertime stratosphere, J. Geophys. Res., 114, D00H09, https://doi.org/10.1029/2009JD012075, 2009.

3. Diskin, G. S., Podolske, J. R., Sachse, G. W., and Slate, T. A.: Open-path airborne tunable diode laser hygrometer, P. SPIE, 4817, 196–204., 2002.

4. Engel, A., Boenisch, H., and TACTS-Team: An overview on the TACTS mission using the new German research aircraft HALO in summer 2012, EGU General Assembly 15, EGU2013-25 9191, 7–12 April 2013, Vienna, Austria, 2013.

5. Fahey, D. W., Gao, R. S., and Möhler, O.: Summary of the AquaVIT water vapor intercomparison: static experiments, available at: https://aquavit.icg.kfa-juelich.de/AquaVit/ (last access: 11 December 2014), 2009.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3