Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

Author:

Sarkar C.ORCID,Sinha V.ORCID,Kumar V.,Rupakheti M.ORCID,Panday A.,Mahata K. S.,Rupakheti D.ORCID,Kathayat B.,Lawrence M. G.ORCID

Abstract

Abstract. The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs) are key constituents of air pollution, though their specific role in the Valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in Nepal in the winter of 2012–2013, a comprehensive study was carried out to characterize the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs by deploying a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS)–the first such deployment in South Asia. 71 ion peaks (for which measured ambient concentrations exceeded the 2 σ detection limit) were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the Valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m/Δm > 4200) and temporal resolution (1 min) of the PTR-TOF-MS. The highest average VOC mixing ratios during the measurement period were (in rank order): acetaldehyde (8.8 ppb), methanol (7.4 ppb), acetone (4.2 ppb), benzene (2.7 ppb), toluene (1.5 ppb), isoprene (1.1 ppb), acetonitrile (1.1 ppb), C8-aromatics (~ 1 ppb), furan (~ 0.5 ppb), and C9-aromatics (0.4 ppb). Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m/z = 69.070) and furan (m/z = 69.033). Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde (~ 9 ppb), acetonitrile (~ 1 ppb) and isoprene (~ 1 ppb) to be among the highest reported till date. Two "new" ambient compounds namely, formamide (m/z = 46.029) and acetamide (m/z = 60.051), which can photochemically produce isocyanic acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust) which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene, and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile which correlated strongly with acetonitrile (r2 > 0.7), a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %), isoprene (20.2 %) and propene (18.7 %), while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known SOA yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were: benzene > naphthalene > toluene > xylenes > monoterpenes > trimethyl-benzenes > styrene > isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid) in the Kathmandu Valley and improve its air quality.

Publisher

Copernicus GmbH

Reference117 articles.

1. Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O / C and OM / OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008.

2. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.

3. Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D. R.: Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, 2013.

4. Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000gb001382, 2001.

5. Andreae, M. O. and Raemdonck, H.: Dimethyl sulfide in the surface ocean and the marine atmosphere – a global view, Science, 221, 744–747, 1983.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3