Assessing the ammonium nitrate formation regime in the Paris megacity and its representation in the CHIMERE model

Author:

Petetin H.ORCID,Sciare J.,Bressi M.,Rosso A.,Sanchez O.,Sarda-Estève R.,Petit J.-E.,Beekmann M.

Abstract

Abstract. Secondary inorganic compounds represent a major fraction of fine aerosol in the Paris megacity. The thermodynamics behind their formation is now relatively well constrained, but due to sparse direct measurements of their precursors (in particular NH3 and HNO3), uncertainties remain on their concentrations and variability as well as the formation regime of ammonium nitrate (in terms of limited species, among NH3 and HNO3) in urban environments such as Paris. This study presents the first urban background measurements of both inorganic aerosol compounds and their gaseous precursors during several months within the city of Paris. Intense agriculture-related NH3 episodes are observed in spring/summer while HNO3 concentrations remain relatively low, even during summer, which leads to a NH3-rich regime in Paris. The local formation of ammonium nitrate within the city appears low, despite high NOx emissions. The dataset is also used to evaluate the CHIMERE chemistry-transport model (CTM). Interestingly, the rather good results obtained on ammonium nitrates hide significant errors on gaseous precursors (e.g. mean bias of −75 and +195 % for NH3 and HNO3, respectively). It thus leads to a mis-representation of the nitrate formation regime through a highly underestimated Gas Ratio metric (introduced by Ansari and Pandis, 1998) and a much higher sensitivity of nitrate concentrations to ammonia changes. Several uncertainty sources are investigated, pointing out the importance of better assessing both NH3 emissions and OH concentrations in the future. These results finally remind the caution required in the use of CTMs for emission scenario analysis, highlighting the importance of prior diagnostic and dynamic evaluations.

Publisher

Copernicus GmbH

Reference101 articles.

1. Aan de Brugh, J. M. J., Henzing, J. S., Schaap, M., Morgan, W. T., van Heerwaarden, C. C., Weijers, E. P., Coe, H., and Krol, M. C.: Modelling the partitioning of ammonium nitrate in the convective boundary layer, Atmos. Chem. Phys., 12, 3005–3023, https://doi.org/10.5194/acp-12-3005-2012, 2012.

2. Airparif: Inventaire des émissions en Ile-de-France en 2005, available at: http://www.airparif.asso.fr/_pdf/publications/Rinventaire_2005_201004.pdf (last access: 12 June 2015), 2010.

3. Airparif: Origine des particules en Ile-de-France, available at: http://www.airparif.asso.fr/_pdf/publications/rapport-particules-110914.pdf (last access: 12 June 2015), 2011.

4. Airparif: Source apportionment of airborne particles in the Ile-de-France region, available at: http://www.airparif.asso.fr/_pdf/publications/rapport-particules-anglais-120829.pdf (last access: 12 June 2015), 2012.

5. Ansari, A. S. and Pandis, S. N.: Response of inorganic PM to precursor concentrations, Environ. Sci. Technol., 32, 2706–2714, https://doi.org/10.1021/es971130j, 1998.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3