Variability of water vapour in the Arctic stratosphere
Author:
Thölix L., Backman L.ORCID, Kivi R.ORCID, Karpechko A.
Abstract
Abstract. This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry climate model simulation covering years 1990–2013 is compared to observations (satellite and frostpoint hygrometer soundings) and the sources of stratospheric water vapour are studied. According to observations and the simulations the water vapour concentration in the Arctic stratosphere started to increase after year 2006, but around 2011 the concentration started to decrease. Model calculations suggest that the increase in water vapour during 2006–2011 (at 56 hPa) is mostly explained by transport related processes, while the photochemically produced water vapour plays a relatively smaller role. The water vapour trend in the stratosphere may have contributed to increased ICE PSC occurrence. The increase of water vapour in the precense of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ICE PSCs in the Arctic vortex. The polar vortex was unusually cold in early 2010 and allowed large scale formation of the polar stratospheric clouds. The cold pool in the stratosphere over the Northern polar latitudes was large and stable and a large scale persistent dehydration was observed. Polar stratospheric ice clouds and dehydration were observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT atmospheric sounding campaign. The observed changes in water vapour were reproduced by the model. Both the observed and simulated decrease of the water vapour in the dehydration layer was up to 1.5 ppm.
Funder
Academy of Finland
Publisher
Copernicus GmbH
Reference50 articles.
1. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, https://doi.org/10.5194/acp-7-981-2007, 2007. 2. Bates, D. R. and Nicolet, M.: The photochemistry of water vapor, J. Geophys. Res., 55, 301–327, 1950. 3. Bekki, S. and Pyle, J.: Two-dimensional assessment of the impact of aircraft sulphur emissions on the stratospheric sulphate aerosol layer, J. Geophys. Res., 9, 15839–15847, 1992. 4. Brewer, A. W.: Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363, 1949. 5. Damski, J., Thölix, L., Backman, L., Taalas, P., and Kulmala, M.: FinROSE – middle atmospheric chemistry and transport model, Boreal Environ. Res., 12, 535–550, 2007.
|
|