Analysis of the potential of near ground measurements of CO<sub>2</sub> and CH<sub>4</sub> in London, UK for the monitoring of city-scale emissions using an atmospheric transport model

Author:

Boon A.,Broquet G.,Clifford D. J.,Chevallier F.ORCID,Butterfield D. M.,Pison I.ORCID,Ramonet M.ORCID,Paris J. D.,Ciais P.

Abstract

Abstract. Carbon dioxide (CO2) and methane (CH4) mole fractions were measured at four near ground sites located in and around London during the summer of 2012 in view to investigate the potential of assimilating such measurements in an atmospheric inversion system for the monitoring of the CO2 and CH4 emissions in the London area. These data were analysed and compared with simulations using a modelling framework suited to building an inversion system: a 2 km horizontal resolution South of England configuration of the transport model CHIMERE driven by European Centre for Medium-Range Weather Forecasting (ECMWF) meteorological forcing, coupled to a 1 km horizontal resolution emission inventory (the UK National Atmospheric Emission Inventory). First comparisons reveal that local sources have a large impact on measurements and these local sources cannot be represented in the model at 2 km resolution. We evaluate methods to minimise some of the other critical sources of misfits between the observation data and the model simulation that overlap the signature of the errors in the emission inventory. These methods should make it easier to identify the corrections that should be applied to the inventory. Analysis is supported by observations from meteorological sites around the city and a three-week period of atmospheric mixing layer height estimations from lidar measurements. The difficulties of modelling the mixing layer depth and thus CO2 and CH4 concentrations during the night, morning and late afternoon led us to focus on the afternoon period for all further analyses. The misfits between observations and model simulations are high for both CO2 and CH4 (i.e., their root mean square (RMS) is between 8 and 12 parts per million (ppm) for CO2 and between 30 and 55 parts per billion (ppb) for CH4 at a given site). By analysing the gradients between the urban sites and a suburban or rural reference site, we are able to decrease the impact of uncertainties in the fluxes and transport outside the London area and in the model domain boundary conditions, and to better focus attention on the signature of London urban CO2 and CH4 emissions. This considerably improves the statistical agreement between the model and observations for CO2 (model–data RMS misfit of between 3 and 7 ppm) and to a lesser degree for CH4 (model–data RMS misfit of between 29 and 38 ppb). Between one of the urban sites and either reference site, selecting the gradients during periods wherein the reference site is upwind of the urban site further decreases the statistics of the misfits in general even though not systematically. In a final attempt to focus on the signature of the city anthropogenic emission in the mole fraction measurements, we use a theoretical ratio of gradients of CO to gradients of CO2 from fossil fuel emissions in the London area to diagnose observation based fossil fuel CO2 gradients, and compare them with the modelled ones. This estimate increases the consistency between the model and the measurements when considering one of the urban sites, but not when considering the other. While this study evaluates different approaches for increasing the consistency between the mesoscale model and the near ground data, and manages to decrease the random component of the analysed model data misfits to an extent that should not be prohibitive to extracting the signal from the London urban emissions, large biases remain in the final misfits. These biases are likely to be due to local emissions, to which the urban near ground sites are highly sensitive. This questions our current ability to exploit urban near ground data for the atmospheric inversion of city emissions based on models at spatial resolution coarser than 2 km.

Publisher

Copernicus GmbH

Reference44 articles.

1. Agustí-Panareda, A., Massart, S., Chevallier, F., Boussetta, S., Balsamo, G., Beljaars, A., Ciais, P., Deutscher, N. M., Engelen, R., Jones, L., Kivi, R., Paris, J.-D., Peuch, V.-H., Sherlock, V., Vermeulen, A. T., Wennberg, P. O., and Wunch, D.: Forecasting global atmospheric CO2, Atmos. Chem. Phys., 14, 11959–11983, https://doi.org/10.5194/acp-14-11959-2014, 2014.

2. Aulagnier, C., Rayner, P., Ciais, P., Vautard, R., Rivier, L., and Ramonet, M.: Is the recent build-up of atmospheric CO2 over Europe reproduced by models – Part 2: an overview with the atmospheric mesoscale transport model CHIMERE, Tellus B, 62, 14–25, https://doi.org/10.1111/j.1600-0889.2009.00443.x, 2010.

3. Barlow, J. F., Halios, C. H., Lane, S. E., and Wood, C. R.: Observations of urban boundary layer structure during a strong urban heat island event, Environ. Fluid Mech., 15, 373–398, https://doi.org/10.1007/s10652-014-9335-6, 2014.

4. Bieser, J., Aulinge, A., Matthias, V., Quante, M., and van der Gon, H.: Vertical emission profiles for Europe based on plume rise calculations, Environ. Pollut., 159, 2935–2946, https://doi.org/10.1016/j.envpol.2011.04.030, 2011.

5. Bohnenstengel, S. I., Belcher, S. E., Aiken, A., Allan, J. D., Allen, G., Bacak, A., Bannan, T. J., Barlow, J. F., Beddows, D. C. S., Bloss, W. J., Booth, A. M., Chemel, C., Coceal, O., Di Marco, C. F., Dubey, M. K., Faloon, K. H., Fleming, Z. L., Furger, M., Gietl, J. K., Graves, R. R., Green, D. C., Grimmond, C. S. B., Halios, C. H., Hamilton, J. F., Harrison, R. M., Heal, M. R., Heard, D. E., Helfter, C., Herndon, S. C., Holmes, R. E., Hopkins, J. R., Jones, A. M., Kelly, F. J., Kotthaus, S., Langford, B., Lee, J. D., Leigh, R. J., Lewis, A. C., Lidster, R. T., Lopez-Hilfiker, F. D., McQuaid, J. B., Mohr, C., Monks, P. S., Nemitz, E., Ng, N. L., Percival, C. J., Prévôt, A. S. H., Ricketts, H. M. A., Sokhi, R., Stone, D., Thornton, J. A., Tremper, A. H., Valach, A. C., Visser, S., Whalley, L. K., Williams, L. R., Xu, L., Young, D. E., and Zotter, P.: Meteorology, air quality, and health in London: the ClearfLo project, B. Am. Meteorol. Soc., 96, 779–804, https://doi.org/10.1175/BAMS-D-12-00245.1, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3