Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

Author:

Osman M.,Tarasick D. W.,Liu J.ORCID,Moeini O.,Thouret V.,Fioletov V. E.,Parrington M.ORCID,Nédélec P.ORCID

Abstract

Abstract. A three-dimensional gridded climatology of carbon monoxide (CO) has been developed by trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft data. CO measurements made during aircraft ascent and descent, comprising nearly 41 200 profiles at 148 airports worldwide from December 2001 to December 2012 are used. Forward and backward trajectories are calculated from meteorological reanalysis data in order to map the CO measurements to other locations, and so to fill in the spatial domain. This domain-filling technique employs 15 800 000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS data into a quasi-global field. The resulting trajectory-mapped CO dataset is archived monthly from 2001–2012 on a grid of 5° longitude × 5° latitude × 1 km altitude, from the surface to 14 km altitude. The mapping product has been carefully evaluated, by comparing maps constructed using only forward trajectories and using only backward trajectories. The two methods show similar global CO distribution patterns. The magnitude of their differences is most commonly 10 % or less, and found to be less than 30 % for almost all cases. The trajectory-mapped CO dataset has also been validated by comparison profiles for individual airports with those produced by the mapping method when data from that site are excluded. While there are larger differences below 2 km, the two methods agree very well between 2 and 10 km with the magnitude of biases within 20 %. Maps are also compared with Version 6 data from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. While agreement is good in the lowermost troposphere, the MOPITT CO profile shows negative biases of ~ 20 % between 500 and 300 hPa. These upper troposphere biases are not related to the mapping procedure, as almost identical differences are found with the original in situ MOZAIC-IAGOS data. The total CO trajectory-mapped MOZAIC-IAGOS climatology column agrees with the MOPITT CO total column within ±5 %, which is consistent with previous reports. The maps clearly show major regional CO sources such as biomass burning in the central and southern Africa and anthropogenic emissions in eastern China. The dataset shows the seasonal CO cycle over different latitude bands and altitude ranges that are representative of the regions as well as long-term trends over latitude bands. We observe a decline in CO over the Northern Hemisphere extratropics and the tropics consistent with that reported by previous studies. Similar maps have been made using the concurrent O3 measurements by MOZAIC-IAGOS, as the global variation of O3–CO correlations can be a useful tool for the evaluation of ozone sources and transport in chemical transport models. We anticipate use of the trajectory-mapped MOZAIC-IAGOS CO dataset as an a priori climatology for satellite retrieval, and for air quality model validation and initialization.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3