Abstract
Abstract. Relationships between basic microphysical parameters are studied within the framework of homogeneous and extreme inhomogeneous mixing. Analytical expressions and numerical simulations of relationships between droplet concentration, extinction coefficient, liquid water content, and mean volume droplet size, formed at the final stage of mixing are presented. The expressions are used to identify type of mixing for in-situ observations obtained in convective clouds. The analysis suggests that for the set of observations investigated here, the interaction between cloudy and entrained environments is dominated by inhomogeneous mixing. Lastly, an analysis of different response times of the cloud environment undergoing mixing is presented. Comparisons of different characteristic times suggest that within the same mixing environment depending on mixing fraction some volumes may be dominated by homogeneous mixing whereas others by inhomogeneous mixing.
Reference28 articles.
1. Andejchuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P. K.: Numerical simulation of cloud–clear air interfacial mixing: homogeneous vs. inhomogeneous mixing., J. Atmos. Sci., 66, 2493–2500, 2009.
2. Baker, M. B. and Latham, J.: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds, J. Atmos. Sci., 36, 1612–1615, 1979.
3. Baker, M. B. and Latham, J.: A diffusive model of the turbulent mixing of dry and cloudy air, Q. J. R. Met. Soc., 108, 871–898, 1982.
4. Baker, M. B., Corbin, R. G., and Latham, J.: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing, Q. J. Roy. Meteor. Soc., 106, 581–598, 1980.
5. Bohren, C. F. and Albrecht, C. H.: Atmospheric Thermodynamics, Oxford University Press, New York, 402 pp., 1998.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献