Observation of viscosity transition in α-pinene secondary organic aerosol
Author:
Järvinen E.ORCID, Ignatius K., Nichman L.ORCID, Kristensen T. B.ORCID, Fuchs C., Höppel N., Corbin J. C.ORCID, Craven J., Duplissy J., Ehrhart S.ORCID, El Haddad I., Frege C.ORCID, Gates S. J., Gordon H.ORCID, Hoyle C. R.ORCID, Jokinen T.ORCID, Kallinger P., Kirkby J.ORCID, Kiselev A.ORCID, Naumann K.-H., Petäjä T.ORCID, Pinterich T., Prevot A. S. H., Saathoff H., Schiebel T., Sengupta K., Simon M., Tröstl J.ORCID, Virtanen A., Vochezer P., Vogt S., Wagner A. C.ORCID, Wagner R.ORCID, Williamson C., Winkler P. M., Yan C.ORCID, Baltensperger U., Donahue N. M.ORCID, Flagan R. C.ORCID, Gallagher M.ORCID, Hansel A.ORCID, Kulmala M.ORCID, Stratmann F., Worsnop D. R., Möhler O., Leisner T., Schnaiter M.ORCID
Abstract
Abstract. Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the CLOUD experiment at CERN, we deployed a new in-situ optical method to detect the viscosity of α-pinene SOA particles and measured their transition from the amorphous viscous to liquid state. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical liquid particles during deliquescence. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to spherical shape was observed as the RH was increased to between 35 % at −10 °C and 80 % at −38 °C, confirming previous calculations of the viscosity transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.
Publisher
Copernicus GmbH
Reference56 articles.
1. Adler, G., Koop, T., Haspel, C., Taraniuk, I., Moise, T., Koren, I., Heiblum, R. H., and Rudich, Y.: Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds, P. Natl. Acad. Sci. USA, 110, 20414–20419, https://doi.org/10.1073/pnas.1317209110, 2013. 2. Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental analysis of organic species with electron ionization high-resolution mass spectrometry, Anal. Chem., 79, 8350–8358, 2007. 3. Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, 2008. 4. Bateman, A. P., Belassein, H., and Martin, S. T.: Impactor apparatus for the study of particle rebound: Relative humidity and capillary forces, Aerosol Sci. Tech., 48, 42–52, 2014. 5. Berkemeier, T., Shiraiwa, M., Pöschl, U., and Koop, T.: Competition between water uptake and ice nucleation by glassy organic aerosol particles, Atmos. Chem. Phys., 14, 12513–12531, https://doi.org/10.5194/acp-14-12513-2014, 2014.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|