High spatial resolution aerosol retrievals used for daily particulate matter monitoring over Po valley, northern Italy

Author:

Arvani B.,Pierce R. B.,Lyapustin A. I.ORCID,Wang Y.,Ghermandi G.,Teggi S.

Abstract

Abstract. The Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Aerosol Optical Depth (AOD) data retrieved at 0.55 μm with spatial resolution of 10 km (MYD04) and the new 1 km Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm from MODIS is investigated in this work. We focus on evaluating the ability of these two products to characterize the spatial distribution of aerosols within urban areas. This is done through the comparison with PM10 measurements from 126 of the Italian Regional Agency for Environmental Protection (ARPA) ground monitoring stations during 2012. The Po Valley area (northern Italy) was chosen as the study domain since urban air pollution is one of the most important concerns in this region. Population and industrial activities are located within a large number of urban areas within the valley. We find that the annual correlations between PM10 and AOD are R2 = 0.90 and R2 = 0.62 for MYD04 and for MAIAC respectively. When the depth of the planetary boundary layer (PBL) is used to normalize the AOD, we find a significant improvement in the PM–AOD correlation. The introduction of the PBL information is needed for AOD to capture the seasonal cycle of the observed PM10 over the Po valley and significantly improves the PM vs. AOD relationship, leading to a correlation of R2 = 0.98 for both retrievals when they are normalized by the PBL depth. The results show that the normalized MAIAC retrieval provides a higher resolution depiction of the AOD within the Po Valley and performs as well in a statistical sense as the normalized standard MODIS retrieval for the same days and locations.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3