Long-term trends of surface ozone and its influencing factors at the Mt. Waliguan GAW station, China – Part 1: Overall trends and characteristics

Author:

Xu W. Y.,Lin W. L.ORCID,Xu X. B.ORCID,Tang J.,Huang J. Q.,Wu H.,Zhang X. C.

Abstract

Abstract. Tropospheric ozone is an important atmospheric oxidant, greenhouse gas and atmospheric pollutant at the same time. The level of tropospheric ozone, particularly in the surface layer, is impacted by emissions of precursors and is subjected to meteorological conditions. Due its importance, the long-term variation trend of baseline ozone is highly needed for environmental and climate change assessment. So far, studies about the long-term trends of ozone at representative sites are mainly available for European and North American sites. Similar studies are lacking for China, a country with rapid economic growth for recent decades, and many other developing countries. To uncover the long-term characteristics and trends of baseline surface ozone, concentration in western China, measurements at a global baseline Global Atmospheric Watch (GAW) station in the north-eastern Tibetan Plateau region (Mt. Waliguan) for the period of 1994 to 2013 were analysed in this study, using a modified Mann–Kendall test and the Hilbert–Huang Transform analysis for the trend and periodicity analysis, respectively. Results reveal higher surface ozone during the night and lower during the day at Waliguan, due to mountain-valley breezes. A seasonal maximum in summer was found, which was probably caused by enhanced stratosphere-to-troposphere exchange events and/or by tropospheric photochemistry. Analysis suggests that there is a season-diurnal cycle in the three-dimensional winds on top of Mt. Waliguan. Season-dependent daytime and nighttime ranges of 6 h were determined based on the season-diurnal cycle in the three-dimensional winds and were used to sort subsets of ozone data for trend analysis. Significant increasing trends in surface ozone were detected for both daytime (1.5–2.7 ppbv 10 a−1) and nighttime (1.3–2.9 ppbv 10 a−1). Autumn and spring revealed the largest increase rates, while summer and winter showed relatively weaker increases. The HHT spectral analysis confirmed the increasing trends in surface ozone concentration and could further identify four different stages with different increasing rates, with the largest increase occurring around May 2000 and October 2010. A 2–4, 7 and 11 year periodicity was found in the surface ozone concentration. The results are highly valuable for related climate and environment change assessments of western China and surrounding areas, and for the validation of chemical-climate models.

Publisher

Copernicus GmbH

Reference59 articles.

1. Ambrose, J. L., Reidmiller, D. R., and Jaffe, D. A.: Causes of high O3 in the lower free troposphere over the Pacific Northwest as observed at the Mt. Bachelor Observatory, Atmos. Environ., 45, 5302–5315, https://doi.org/10.1016/j.atmosenv.2011.06.056, 2011.

2. Bonasoni, P., Evangelisti, F., Bonafe, U., Ravegnani, F., Calzolari, F., Stohl, A., Tositti, L., Tubertini, O., and Colombo, T.: Stratospheric ozone intrusion episodes recorded at Mt. Cimone during the VOTALP project: case studies, Atmos. Environ., 34, 1355–1365, https://doi.org/10.1016/S1352-2310(99)00280-0, 2000.

3. Cooper, O. R., Parrish, D. D., Stohl, A., Trainer, M., Nedelec, P., Thouret, V., Cammas, J. P., Oltmans, S. J., Johnson, B. J., Tarasick, D., Leblanc, T., McDermid, I. S., Jaffe, D., Gao, R., Stith, J., Ryerson, T., Aikin, K., Campos, T., Weinheimer, A., and Avery, M. A.: Increasing springtime ozone mixing ratios in the free troposphere over western North America, Nature, 463, 344–348, https://doi.org/10.1038/nature08708, 2010.

4. Cui, J., Pandey Deolal, S., Sprenger, M., Henne, S., Staehelin, J., Steinbacher, M., and Nédélec, P.: Free tropospheric ozone changes over Europe as observed at Jungfraujoch (1990–2008): an analysis based on backward trajectories, J. Geophys. Res.-Atmos., 116, D10304, https://doi.org/10.1029/2010JD015154, 2011.

5. Ding, A. and Wang, T.: Influence of stratosphere-to-troposphere exchange on the seasonal cycle of surface ozone at Mount Waliguan in western China, Geophys. Res. Lett., 33, L03803, https://doi.org/10.1029/2005GL024760, 2006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3