Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) – chemical composition, origins and organic aerosol sources
Author:
Fröhlich R., Cubison M. J., Slowik J. G., Bukowiecki N.ORCID, Canonaco F., Henne S.ORCID, Herrmann E., Gysel M.ORCID, Steinbacher M.ORCID, Baltensperger U., Prévôt A. S. H.
Abstract
Abstract. Chemically resolved (organic, nitrate, sulphate, ammonium) data of non-refractory submicron (NR-PM1) aerosol from the first long-term deployment (27 July 2012 to 02 October 2013) of a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) at the Swiss high altitude site Jungfraujoch (3580 m a.s.l.) are presented. Besides total mass loadings, diurnal variations and relative species contributions during the different meteorological seasons, geographical origin and sources of organic aerosol (OA) are discussed. Backward transport simulations shows that the highest (especially sulphate) concentrations of NR-PM1 were measured in air masses advected to the station from regions south of the JFJ while lowest concentrations were seen from western regions. OA source apportionment for each season was performed using the Source Finder (SoFi) interface for the multilinear engine (ME-2). OA was dominated in all seasons by oxygenated OA (OOA, 71–88 %), with lesser contributions from local tourism-related activities (7–12 %) and hydrocarbon-like OA related to regional vertical transport (3–9 %). In summer the OOA can be separated into a background low-volatility OA (LV-OOA I, possibly associated with long range transport) and a slightly less oxidised low-volatility OA (LV-OOA II) associated with regional vertical transport. Wood burning-related OA associated with regional transport was detected during the whole winter 2012/2013 and during rare events in summer 2013, in the latter case attributed to small scale transport for the surrounding valleys. Additionally, the data were divided into periods with free tropospheric (FT) conditions and periods with planetary boundary layer (PBL) influence enabling the assessment of the composition for each. Most nitrate and part of the OA is injected from the regional PBL while sulphate is mainly produced in the FT. The south/north gradient of sulphate is also pronounced in FT air masses (sulphate mass fraction from the south: 45 %, from the north: 29 %). Furthermore, a detailed investigation of specific marker fragments of the OA spectra (f43, f44, f55, f57, f60) showed different degrees of ageing depending on season.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung Seventh Framework Programme European Research Council
Publisher
Copernicus GmbH
Reference120 articles.
1. Alfarra, M. R., Coe, H., Allan, J. D., Bower, K. N., Boudries, H., Canagaratna, M. R., Jimenez, J. L., Jayne, J. T., Garforth, A. A., Li, S.-M., and Worsnop, D. R.: Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers, Atmos. Environ., 38, 5745–5758, 2004. 2. Allan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Bower, K. N., Jayne, J. T., Coe, H., and Worsnop, D. R.: Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis, J. Geophys. Res.-Atmos., 108, 4090, https://doi.org/10.1029/2002JD002358, 2003. 3. Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M., Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909–922, 2004. 4. Andreani-Aksoyoğlu, Ş., Keller, J., Alfarra, M., Prévôt, A., Sloan, J., and He, Z.: Contribution of biogenic emissions to carbonaceous aerosols in summer and winter in Switzerland: a modelling study, in: Air Pollution Modeling and Its Application XIX, edited by: Borrego, C. and Miranda, A., NATO Science for Peace and Security Series Series C: Environmental Security, 101–108, Springer, the Netherlands, 2008. 5. Appenzeller, C., Begert, M., Zenklusen, E., and Scherrer, S. C.: Monitoring climate at Jungfraujoch in the high Swiss Alpine region, Sci. Total Environ., 391, 262–268, 2008.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|