Response of hydrology and CO<sub>2</sub> flux to experimentally altered rainfall frequency in a temperate poor fen, southern Ontario, Canada

Author:

Radu Danielle D.,Duval Tim P.ORCID

Abstract

Abstract. Predicted changes to the precipitation regime in many parts of the world include intensifying the distribution into lower frequency, large magnitude events. The corresponding alterations to the soil moisture regime may affect plant growth and soil respiration, particularly in peatlands, where large stores of organic carbon are due to gross ecosystem productivity (GEP) exceeding ecosystem respiration (ER). This study uses lab monoliths corroborated with field measurements to examine the effect of changing rainfall frequency on peatland moisture controls on CO2 uptake in an undisturbed cool temperate poor fen. Lab monoliths and field plots containing mosses, sedges, or shrubs received either 2.3, 1, or 0.5 precipitation events per week, with total rainfall held constant. Decreasing rain frequency led to lower near-surface volumetric moisture content (VMC), water table (WT), and soil tension for all vegetation types, with minimal effect on evapotranspiration. The presence of sedges in particular led to soil tensions of ≥100 cm of water for a sizeable duration (37 %) of the experiment. Altered rainfall frequencies affected GEP but had little effect on ER; overall, low-frequency rain led to a reduced net CO2 uptake for all three vegetation types. VMC had a strong control on GEP and net ecosystem exchange (NEE) of the Sphagnum capillifolium monoliths, and decreasing rainfall frequency influenced these relationships. Overall, communities dominated by mosses became net sources of CO2 after 3 days without rain, whereas sedge communities remained net sinks for up to 14 days without rain. The results of this study demonstrate the hydrological controls of peatland CO2 exchange dynamics influenced by changing precipitation frequency; furthermore, they suggest these predicted changes in frequency will lead to increased sedge GEP but limit the carbon-sink function of peatlands.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference93 articles.

1. Adkinson, A. C. and Humphreys, E. R.: The response of carbon dioxide exchange to manipulations of Sphagnum water content in an ombrotrophic bog, Ecohydrology, 4, 733–743, https://doi.org/10.1002/eco.171, 2011.

2. Admiral, S. W. and P. M. Lafleur.: Partitioning of latent heat flux at a northern peatland, Aquat. Botany, 86, 107–116, https://doi.org/10.1016/j.aquabot.2006.09.006, 2007.

3. Alm, J., Schulman, L., Walden, J., Nykanen, H., Martikainen, P. J., and Silvola, J.: Carbon balance of a boreal bog within a year with an exceptionally dry summer, Ecology, 80, 161–174, https://doi.org/10.1890/0012-9658(1999)080[0161:CBOABB]2.0.CO;2, 1999.

4. Bragazza, L., Parisod, J., Buttler, A., and Bardgett, R. D.: Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands, Nat. Clim. Change, 3, 273–277, https://doi.org/10.1038/NCLIMATE1781, 2013.

5. Burwasser, C. J.: Quaternary geology of the collingwood-nottawasaga area, southern ontario; ontario div. mines, prelim, Map P. 919 Geol. Ser., scale 1:50,000, 1974.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3