Simultaneous ground-based and in situ Swarm observations of equatorial F-region irregularities over Jicamarca

Author:

Aol SharonORCID,Buchert StephanORCID,Jurua Edward,Milla MarcoORCID

Abstract

Abstract. Ionospheric irregularities are a common phenomenon in the low-latitude ionosphere. They can be seen in situ as depletions of plasma density, radar plasma plumes, or ionogram spread F by ionosondes. In this paper, we compared simultaneous observations of plasma plumes by the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar, ionogram spread F generated from ionosonde observations installed at the Jicamarca Radio Observatory (JRO), and irregularities observed in situ by Swarm in order to determine whether Swarm in situ observations can be used as indicators of the presence of plasma plumes and spread F on the ground. The study covered the years from 2014 to 2018, as this was the period for which JULIA, Swarm, and ionosonde data sets were available. Overall, the results showed that Swarm's in situ density fluctuations on magnetic flux tubes passing over (or near) the JRO may be used as indicators of plasma plumes and spread F over (or near) the observatory. For Swarm and the ground-based observations, a classification procedure was conducted based on the presence or absence of ionospheric irregularities. There was a strong consensus between ground-based observations of ionospheric irregularities and Swarm's depth of disturbance of electron density for most passes. Cases, where ionospheric irregularities were observed on the ground with no apparent variation in the in situ electron density or vice versa, suggest that irregularities may either be localized horizontally or restricted to particular height intervals. The results also showed that the Swarm and ground-based observations of ionospheric irregularities had similar local time statistical trends with the highest occurrence obtained between 20:00 and 22:00 LT. Moreover, similar seasonal patterns of the occurrence of in situ and ground-based ionospheric irregularities were observed with the highest percentage occurrence at the December solstice and the equinoxes and low occurrence at the June solstice. The observed seasonal pattern was explained in terms of the pre-reversal enhancement (PRE) of the vertical plasma drift. Initial findings from this research indicate that fluctuations in the in situ density observed meridionally along magnetic field lines passing through the JRO can be used as an indication of the existence of well-developed plasma plumes.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3