Cosmic noise absorption signature of particle precipitation during interplanetary coronal mass ejection sheaths and ejecta

Author:

Kilpua Emilia,Juusola LiisaORCID,Grandin MaximeORCID,Kero Antti,Dubyagin Stepan,Partamies Noora,Osmane Adnane,George HarrietORCID,Kalliokoski MillaORCID,Raita TeroORCID,Asikainen Timo,Palmroth MinnaORCID

Abstract

Abstract. We study here energetic-electron (E>30 keV) precipitation using cosmic noise absorption (CNA) during the sheath and ejecta structures of 61 interplanetary coronal mass ejections (ICMEs) observed in the near-Earth solar wind between 1997 and 2012. The data come from the Finnish riometer (relative ionospheric opacity meter) chain from stations extending from auroral (IVA, 65.2∘ N geomagnetic latitude; MLAT) to subauroral (JYV, 59.0∘ N MLAT) latitudes. We find that sheaths and ejecta lead frequently to enhanced CNA (>0.5 dB) both at auroral and subauroral latitudes, although the CNA magnitudes stay relatively low (medians around 1 dB). Due to their longer duration, ejecta typically lead to more sustained enhanced CNA periods (on average 6–7 h), but the sheaths and ejecta were found to be equally effective in inducing enhanced CNA when relative-occurrence frequency and CNA magnitude were considered. Only at the lowest-MLAT station, JYV, ejecta were more effective in causing enhanced CNA. Some clear trends of magnetic local time (MLT) and differences between the ejecta and sheaths were found. The occurrence frequency and magnitude of CNA activity was lowest close to midnight, while it peaked for the sheaths in the morning and afternoon/evening sectors and for the ejecta in the morning and noon sectors. These differences may reflect differences in typical MLT distributions of wave modes that precipitate substorm-injected and trapped radiation belt electrons during the sheaths and ejecta. Our study also emphasizes the importance of substorms and magnetospheric ultra-low-frequency (ULF) waves for enhanced CNA.

Funder

Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta

European Research Council

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3