Odd hydrogen response thresholds for indication of solar proton and electron impact in the mesosphere and stratosphere

Author:

Häkkilä TuomasORCID,Verronen Pekka T.ORCID,Millán Luis,Szeląg Monika E.ORCID,Kalakoski NiiloORCID,Kero Antti

Abstract

Abstract. Understanding the atmospheric forcing from energetic particle precipitation (EPP) is important for climate simulations on decadal time scales. However, presently there are large uncertainties in energy flux measurements of electron precipitation. One approach to narrowing these uncertainties is by analyses of EPP direct atmospheric impacts and their relation to measured EPP fluxes. Here we use observations from the microwave limb sounder (MLS) and Whole Atmosphere Community Climate Model (WACCM) simulations, together with EPP fluxes from the Geostationary Operational Environmental Satellite (GOES) and Polar-orbiting Operational Environmental Satellite (POES) to determine the OH and HO2 response thresholds to solar proton events (SPEs) and radiation belt electron (RBE) precipitation. Because of their better signal-to-noise ratio and extended altitude range, we utilize MLS HO2 data from an improved offline processing instead of the standard operational product. We consider a range of altitudes in the middle atmosphere and all magnetic latitudes from pole to pole. We find that the nighttime flux limits for day-to-day EPP impact detection using OH and HO2 are 50–130 protonscm-2s-1sr-1 (E>10 MeV) and 1.0–2.5×104 electronscm-2s-1sr-1 (E = 100–300 keV). Based on the WACCM simulations, nighttime OH and HO2 are good EPP indicators in the polar regions and provide best coverage in altitude and latitude. Due to larger background concentrations, daytime detection requires larger EPP fluxes and is possible in the mesosphere only. SPE detection is easier than RBE detection because a wider range of polar latitudes is affected, i.e., the SPE impact is rather uniform poleward of 60∘, while the RBE impact is focused at 60∘. Altitude-wise, the SPE and RBE detection are possible at ≈ 35–80 and ≈ 65–75 km, respectively. We also find that the MLS OH observations indicate a clear nighttime response to SPE and RBE in the mesosphere, similar to the simulations. However, the MLS OH data are too noisy for response detection in the stratosphere below 50 km, and the HO2 measurements are overall too noisy for confident EPP detection on a day-to-day basis.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference46 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3