Spatial and seasonal effects on the delayed ionospheric response to solar EUV changes

Author:

Schmölter ErikORCID,Berdermann JensORCID,Jakowski Norbert,Jacobi ChristophORCID

Abstract

Abstract. This study correlates different ionospheric parameters with the integrated solar extreme ultraviolet radiation (EUV) radiation to analyze the delayed ionospheric response, testing and improving upon previous studies on the ionospheric delay. Several time series of correlation coefficients and delays are presented to characterize the trend of the ionospheric delay from January 2011 to December 2013. The impact of the diurnal variations of ionospheric parameters in the analysis at an hourly resolution for fixed locations are discussed and specified with calculations in different timescales and with comparison to solar and geomagnetic activity. An average delay for the total electron content (TEC) of ≈18.7 h and for foF2 of ≈18.6 h is calculated at four European stations. The difference between the Northern and Southern hemispheres is analyzed by comparisons with the Australian region. A seasonal variation of the delay between the Northern and Southern hemispheres is calculated for TEC with ≈5±0.7 h and foF2 with ≈8±0.8 h. The latitudinal and longitudinal variability of the delay is analyzed for the European region, and found to be characterized by a decrease in the delay from ≈21.5 h at 30∘ N to ≈19.0 h at 70∘ N for summer months. For winter months, a roughly constant delay of ≈19.5 h is calculated. The results based on solar and ionospheric data at an hourly resolution and the analysis of the delayed ionospheric response to solar EUV show seasonal and latitudinal variations. Results also indicate a relationship of the ionospheric delay with geomagnetic activity and a possible correlation with the 11-year solar cycle in the analyzed time period.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3