An inter-hemispheric seasonal comparison of polar amplification using radiative forcing of a quadrupling CO<sub>2</sub> experiment

Author:

Casagrande Fernanda,Buss de Souza RonaldORCID,Nobre Paulo,Lanfer Marquez Andre

Abstract

Abstract. The numerical climate simulations from the Brazilian Earth System Model (BESM) are used here to investigate the response of the polar regions to a forced increase in CO2 (Abrupt-4×CO2) and compared with Coupled Model Intercomparison Project phase 5 (CMIP5) and 6 (CMIP6) simulations. The main objective here is to investigate the seasonality of the surface and vertical warming as well as the coupled processes underlying the polar amplification, such as changes in sea ice cover. Polar regions are described as the most climatically sensitive areas of the globe, with an enhanced warming occurring during the cold seasons. The asymmetry between the two poles is related to the thermal inertia and the coupled ocean–atmosphere processes involved. While at the northern high latitudes the amplified warming signal is associated with a positive snow– and sea ice–albedo feedback, for southern high latitudes the warming is related to a combination of ozone depletion and changes in the wind pattern. The numerical experiments conducted here demonstrated very clear evidence of seasonality in the polar amplification response as well as linkage with sea ice changes. In winter, for the northern high latitudes (southern high latitudes), the range of simulated polar warming varied from 10 to 39 K (−0.5 to 13 K). In summer, for northern high latitudes (southern high latitudes), the simulated warming varies from 0 to 23 K (0.5 to 14 K). The vertical profiles of air temperature indicated stronger warming at the surface, particularly for the Arctic region, suggesting that the albedo–sea ice feedback overlaps with the warming caused by meridional transport of heat in the atmosphere. The latitude of the maximum warming was inversely correlated with changes in the sea ice within the model's control run. Three climate models were identified as having high polar amplification for the Arctic cold season (DJF): IPSL-CM6A-LR (CMIP6), HadGEM2-ES (CMIP5) and CanESM5 (CMIP6). For the Antarctic, in the cold season (JJA), the climate models identified as having high polar amplification were IPSL-CM6A-LR (CMIP6), CanESM5(CMIP6) and FGOALS-s2 (CMIP5). The large decrease in sea ice concentration is more evident in models with great polar amplification and for the same range of latitude (75–90∘ N). Also, we found, for models with enhanced warming, expressive changes in the sea ice annual amplitude with outstanding ice-free conditions from May to December (EC-Earth3-Veg) and June to December (HadGEM2-ES). We suggest that the large bias found among models can be related to the differences in each model to represent the feedback process and also as a consequence of each distinct sea ice initial condition. The polar amplification phenomenon has been observed previously and is expected to become stronger in the coming decades. The consequences for the atmospheric and ocean circulation are still subject to intense debate in the scientific community.

Funder

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference93 articles.

1. Alexeev, V. A., Langen, P. L., and Bates, J. R.: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks, Clim. Dynam., 24, 655–666, https://doi.org/10.1007/s00382-005-0018-3, 2005.

2. Ambaum, M. H. P., Hoskins, B. J., and Stephenson, D. B.: Arctic Oscillation or North Atlantic Oscillation?, J. Climate, 14, 3495–3507, https://doi.org/10.1175/1520-0442(2001)014&lt;3495:AOONAO&gt;2.0.CO;2, 2001.

3. Bader, D. C., Leung, R., Taylor, M., McCoy, R. B.: E3SM-Project E3SM1.0 model output prepared for CMIP6 CMIP Abrupt-4×CO2, Version 20200701, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4491, 2019.

4. Bao, Q., Lin, P., Zhou, T., Liu, Y., Yu, Y., Wu, G., and Li, Y.: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2, Adv. Atmos. Sci., 30, 561–576, 2013.

5. Bekryaev, R. V., Polyakov, I. V., and Alexeev, V. A.: Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming, J. Climate, 23, 3888–3906, https://doi.org/10.1175/2010JCLI3297.1, 2010.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3