Forcing mechanisms of the migrating quarterdiurnal tide
-
Published:2020-04-20
Issue:2
Volume:38
Page:527-544
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Author:
Geißler Christoph, Jacobi ChristophORCID, Lilienthal Friederike
Abstract
Abstract. We used a nonlinear mechanistic global circulation model to analyze the migrating quarterdiurnal tide (QDT) in the middle atmosphere with focus on its possible forcing mechanisms: the absorption of solar radiation by ozone and water vapor, nonlinear tidal interactions, and gravity wave–tide interactions. We show a climatology of the QDT amplitudes, and we examine the contribution of the different forcing mechanisms to the QDT amplitude. To this end, we first extracted the QDT from the model tendency terms and then removed the respective QDT contribution from the different tendency terms. We find that the solar forcing mechanism is the most important one for the QDT; however, the nonlinear and gravity wave forcing mechanisms also play a role in autumn and winter, particularly at lower and middle latitudes in the mesosphere and lower thermosphere. Furthermore, destructive interference between the individual forcing mechanisms is observed. Therefore, tidal amplitudes become even larger in simulations with the nonlinear or gravity wave forcing mechanisms removed.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Reference57 articles.
1. Andrews, D. G., Leovy, C. B., and Holton, J. R.: Middle atmosphere dynamics,
vol. 40, Academic press, 1987. a, b 2. Azeem, I., Walterscheid, R. L., Crowley, G., Bishop, R. L., and Christensen,
A. B.: Observations of the migrating semidiurnal and quaddiurnal tides from
the RAIDS/NIRS instrument, J. Geophy. Res.-Space Phys., 121, 4626–4637,
https://doi.org/10.1002/2015JA022240, 2016. a, b, c, d, e, f 3. Chapman, S. and Lindzen, R. S.: Atmospheric Tides, D. Reidel Publishing Company
(Dordrecht, Holland), 1970. a, b 4. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a, b 5. Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E.,
Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., McDonald, S. E., Huba,
J. D., and Klenzing, J. H.: An update to the Horizontal Wind Model (HWM): The
quiet time thermosphere, Earth and Space Sci., 2, 301–319,
https://doi.org/10.1002/2014EA000089, 2015. a
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|