A model for the benthic-pelagic coupling of silica in estuarine ecosystems: sensitivity analysis and system scale simulation

Author:

Arndt S.,Regnier P.

Abstract

Abstract. A transient, vertically resolved, analytical model for the early diagenesis of silica has been developed to quantify the importance of benthic-pelagic coupling in estuarine biogeochemical silica cycling. A sensitivity analysis based on Monte-Carlo simulations is carried out to assess the intensity and timing of benthic diffusive fluxes in response to a pelagic diatom bloom. The diffusive flux dynamics are analyzed over a realistic range of dissolution rate constants (max kSi ε [6×10−3–3.6×10−1 d−1]), diffusion coefficients of dissolved silica (DSi ε [35×10−6–35×10−5 m2 d−1]) and duration of dissolved silica depletion in the water column (wPDSI ε [1–3 month]). Results show that the diffusive silica flux responds with a time delay of 20 to 120 days to the biogenic silica deposition pulse. For high max kSi, simulated time lags are shortest and completely determined by the dissolution kinetics. However, decreasing max kSi leads to a slower benthic flux response. In addition, the variability increases due to the increasing importance of transport processes. The sensitivity study also allows us to constrain the uncertainties of a system-scale simulation, where a large number of benthic compartments (>50 000) are coupled to a high-resolution (100×100 m) pelagic model of a macrotidal river and estuary (Western Scheldt, B/NL). The model is applied to a diatom bloom event recorded in 2003, characterized by pelagic silica depletion in August. Benthic processes are mainly modulated by the combined influence of local hydrodynamic conditions and pelagic primary production dynamics, and show therefore a high degree of spatial heterogeneity over short distances. Spatially integrated deposition fluxes and dissolution rates of biogenic silica are high throughout the growth period, with maxima of 1.3×105 mol d−1 (=8.0 mmol m2 d−1) and 7.8×104 mol d−1 (=4.8 mmol m2 d−1) in mid-August. The spatially integrated diffusive flux reaches a maximum of 1.5×104 mol d−1 at the end of a pelagic silica depletion period in September. However, the total amount of dissolved silica released from the estuarine sediments between June and December 2003 is small (2×106 mol) compared to the much higher riverine influx of dissolved silica (5.9×107 mol) and plays a minor role in the pelagic primary production dynamics.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3