Information content analysis: the potential for methane isotopologue retrieval from GOSAT-2
-
Published:2018-02-28
Issue:2
Volume:11
Page:1159-1179
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Malina Edward, Yoshida YukioORCID, Matsunaga TsuneoORCID, Muller Jan-PeterORCID
Abstract
Abstract. Atmospheric methane is comprised of multiple isotopic molecules,
with the most abundant being 12CH4 and 13CH4, making up 98
and 1.1 % of atmospheric methane respectively. It has been shown that is
it possible to distinguish between sources of methane (biogenic methane, e.g.
marshland, or abiogenic methane, e.g. fracking) via a ratio of these main
methane isotopologues, otherwise known as the δ13C value.
δ13C values typically range between −10 and
−80 ‰, with abiogenic sources
closer to zero and biogenic sources showing more negative values. Initially,
we suggest that a δ13C difference of 10 ‰ is sufficient,
in order to differentiate between methane source types, based on this we
derive that a precision of 0.2 ppbv on 13CH4 retrievals may
achieve the target δ13C variance. Using an application of the
well-established information content analysis (ICA) technique for assumed clear-sky conditions, this paper shows that using a combination of the shortwave
infrared (SWIR) bands on the planned Greenhouse gases Observing SATellite
(GOSAT-2) mission, 13CH4 can be measured with sufficient
information content to a precision of between 0.7 and 1.2 ppbv from a
single sounding (assuming a total column average value of 19.14 ppbv), which
can then be reduced to the target precision through spatial and temporal
averaging techniques. We therefore suggest that GOSAT-2 can be used to
differentiate between methane source types. We find that large unconstrained
covariance matrices are required in order to achieve sufficient information
content, while the solar zenith angle has limited impact on the information
content.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. Aydin, M., Verhulst, K. R., Saltzman, E. S., Battle, M. O., Montzka, S. A.,
Blake, D. R., Tang, Q., and Prather, M. J.: Recent decreases in fossil-fuel
emissions of ethane and methane derived from firn air, Nature, 476, 198–201,
https://doi.org/10.1038/nature10352, 2011. 2. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S.,
Rozanov, V. V, Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission
Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150,
https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999. 3. Brown, L. R., Sung, K., Benner, D. C., Devi, V. M., Boudon, V., Gabard, T.,
Wenger, C., Campargue, A., Leshchishina, O., Kassi, S., Mondelain, D., Wang,
L., Daumont, L., Régalia, L., Rey, M., Thomas, X., Tyuterev, V. G.,
Lyulin, O. M., Nikitin, A. V, Niederer, H. M., Albert, S., Bauerecker, S.,
Quack, M., O'Brien, J. J., Gordon, I. E., Rothman, L. S., Sasada, H.,
Coustenis, A., Smith, M. A. H., Carrington, T., Wang, X. G., Mantz, A. W.,
and Spickler, P. T.: Methane line parameters in the HITRAN2012 database, J.
Quant. Spectrosc. Ra., 130, 201–219, https://doi.org/10.1016/j.jqsrt.2013.06.020, 2013. 4. Buzan, E. M., Beale, C. A., Boone, C. D., and Bernath, P. F.: Global
stratospheric measurements of the isotopologues of methane from the
Atmospheric Chemistry Experiment Fourier transform spectrometer, Atmos. Meas.
Tech., 9, 1095–1111, https://doi.org/10.5194/amt-9-1095-2016, 2016. 5. Ceccherini, S. and Ridolfi, M.: Technical Note: Variance-covariance matrix
and averaging kernels for the Levenberg-Marquardt solution of the retrieval
of atmospheric vertical profiles, Atmos. Chem. Phys., 10, 3131–3139,
https://doi.org/10.5194/acp-10-3131-2010, 2010.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|