Measurement of formic acid, acetic acid and hydroxyacetaldehyde, hydrogen peroxide, and methyl peroxide in air by chemical ionization mass spectrometry: airborne method development

Author:

Treadaway VictoriaORCID,Heikes Brian G.,McNeill Ashley S.,Silwal Indira K. C.,O'Sullivan Daniel W.

Abstract

Abstract. A chemical ionization mass spectrometry (CIMS) method utilizing a reagent gas mixture of O2, CO2, and CH3I in N2 is described and optimized for quantitative gas-phase measurements of hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HCOOH), and the sum of acetic acid (CH3COOH) and hydroxyacetaldehyde (HOCH2CHO; also known as glycolaldehyde). The instrumentation and methodology were designed for airborne in situ field measurements. The CIMS quantification of formic acid, acetic acid, and hydroxyacetaldehyde used I− cluster formation to produce and detect the ion clusters I−(HCOOH), I−(CH3COOH), and I−(HOCH2CHO), respectively. The CIMS also produced and detected I− clusters with hydrogen peroxide and methyl peroxide, I−(H2O2) and I−(CH3OOH), though the sensitivity was lower than with the O2− (CO2) and O2− ion clusters, respectively. For that reason, while the I− peroxide clusters are presented, the focus is on the organic acids. Acetic acid and hydroxyacetaldehyde were found to yield equivalent CIMS responses. They are exact isobaric compounds and indistinguishable in the CIMS used. Consequently, their combined signal is referred to as the acetic acid equivalent sum. Within the resolution of the quadrupole used in the CIMS (1 m∕z), ethanol and 1- and 2-propanol were potential isobaric interferences to the measurement of formic acid and the acetic acid equivalent sum, respectively. The CIMS response to ethanol was 3.3 % that of formic acid and the response to either 1- or 2-propanol was 1 % of the acetic acid response; therefore, the alcohols were not considered to be significant interferences to formic acid or the acetic acid equivalent sum. The multi-reagent ion system was successfully deployed during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) in 2014. The combination of FRAPPÉ and laboratory calibrations allowed for the post-mission quantification of formic acid and the acetic acid equivalent sum observed during the Deep Convective Clouds and Chemistry Experiment in 2012.

Funder

Division of Atmospheric and Geospace Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference64 articles.

1. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.

2. Amelynck, C., Schoon, N., and Arijs, E.: Gas phase reactions of CF3O- and CF3O-H2O with nitric, formic, and acetic acid, Int. J. Mass Spectrom., 203, 165–175, https://doi.org/10.1016/S1387-3806(00)00321-3, 2000.

3. Apel, E. C., Hornbrook, R. S., Hills, A. J., Blake, N. J., Barth, M. C., Weinheimer, A., Cantrell, C., Rutledge, S. A., Basarab, B., Crawford, J., Diskin, G., Homeyer, C. R., Campos, T., Flocke, F., Fried, A., Blake, D. R., Brune, W., Pollack, I., Peischl, J., Ryerson, T., Wennberg, P. O., Crounse, J. D., Wisthaler, A., Mikoviny, T., Huey, G., Heikes, B., O'Sullivan, D., and Riemer, D. D.: Upper tropospheric ozone production from lightning NOx-impacted convection: smoke ingestion case study from the DC3 campaign, J. Geophys. Res.-Atmos., 120, 2505–2523, https://doi.org/10.1002/2014JD022121, 2015.

4. Baasandorj, M., Millet, D. B., Hu, L., Mitroo, D., and Williams, B. J.: Measuring acetic and formic acid by proton-transfer-reaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences, Atmos. Meas. Tech., 8, 1303–1321, https://doi.org/10.5194/amt-8-1303-2015, 2015.

5. Bacher, C., Tyndall, G. S., and Orlando, J. J.: The atmospheric chemistry of glycoaldehyde, J. Atmos. Chem., 39, 171–189, 2001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3