An ion-neutral model to investigate chemical ionization mass spectrometry analysis of atmospheric molecules – application to a mixed reagent ion system for hydroperoxides and organic acids

Author:

Heikes Brian G.,Treadaway VictoriaORCID,McNeill Ashley S.,Silwal Indira K. C.,O'Sullivan Daniel W.

Abstract

Abstract. An ion-neutral chemical kinetic model is described and used to simulate the negative ion chemistry occurring within a mixed-reagent ion chemical ionization mass spectrometer (CIMS). The model objective was the establishment of a theoretical basis to understand ambient pressure (variable sample flow and reagent ion carrier gas flow rates), water vapor, ozone and oxides of nitrogen effects on ion cluster sensitivities for hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HFo) and acetic acid (HAc). The model development started with established atmospheric ion chemistry mechanisms, thermodynamic data and reaction rate coefficients. The chemical mechanism was augmented with additional reactions and their reaction rate coefficients specific to the analytes. Some existing reaction rate coefficients were modified to enable the model to match laboratory and field campaign determinations of ion cluster sensitivities as functions of CIMS sample flow rate and ambient humidity. Relative trends in predicted and observed sensitivities are compared as instrument specific factors preclude a direct calculation of instrument sensitivity as a function of sample pressure and humidity. Predicted sensitivity trends and experimental sensitivity trends suggested the model captured the reagent ion and cluster chemistry and reproduced trends in ion cluster sensitivity with sample flow and humidity observed with a CIMS instrument developed for atmospheric peroxide measurements (PCIMSs). The model was further used to investigate the potential for isobaric compounds as interferences in the measurement of the above species. For ambient O3 mixing ratios more than 50 times those of H2O2, O3−(H2O) was predicted to be a significant isobaric interference to the measurement of H2O2 using O2−(H2O2) at m∕z 66. O3 and NO give rise to species and cluster ions, CO3−(H2O) and NO3−(H2O), respectively, which interfere in the measurement of CH3OOH using O2−(CH3OOH) at m∕z 80. The CO3−(H2O) interference assumed one of its O atoms was 18O and present in the cluster in proportion to its natural abundance. The model results indicated monitoring water vapor mixing ratio, m∕z 78 for CO3−(H2O) and m∕z 98 for isotopic CO3−(H2O)2 can be used to determine when CO3−(H2O) interference is significant. Similarly, monitoring water vapor mixing ratio, m∕z 62 for NO3− and m∕z 98 for NO3−(H2O)2 can be used to determine when NO3−(H2O) interference is significant.

Funder

Division of Atmospheric and Geospace Sciences

Colorado Department of Public Health and Environment

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3