A continued role of short-lived climate forcers under the Shared Socioeconomic Pathways

Author:

Lund Marianne T.ORCID,Aamaas BorgarORCID,Stjern Camilla W.ORCID,Klimont Zbigniew,Berntsen Terje K.,Samset Bjørn H.

Abstract

Abstract. Mitigation of non-CO2 emissions plays a key role in meeting the Paris Agreement ambitions and sustainable development goals. Implementation of respective policies addressing these targets mainly occur at sectoral and regional levels, and designing efficient mitigation strategies therefore relies on detailed knowledge about the mix of emissions from individual sources and their subsequent climate impact. Here we present a comprehensive dataset of near- and long-term global temperature responses to emissions of CO2 and individual short-lived climate forcers (SLCFs) from 7 sectors and 13 regions – for both present-day emissions and their continued evolution as projected under the Shared Socioeconomic Pathways (SSPs). We demonstrate the key role of CO2 in driving both near- and long-term warming and highlight the importance of mitigating methane emissions from agriculture, waste management, and energy production as the primary strategy to further limit near-term warming. Due to high current emissions of cooling SLCFs, policies targeting end-of-pipe energy sector emissions may result in net added warming unless accompanied by simultaneous methane and/or CO2 reductions. We find that SLCFs are projected to play a continued role in many regions, particularly those including low- to medium-income countries, under most of the SSPs considered here. East Asia, North America, and Europe will remain the largest contributors to total net warming until 2100, regardless of scenario, while South Asia and Africa south of the Sahara overtake Europe by the end of the century in SSP3-7.0 and SSP5-8.5. Our dataset is made available in an accessible format, aimed also at decision makers, to support further assessment of the implications of policy implementation at the sectoral and regional scales.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3