Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations

Author:

Yu F.,Luo G.

Abstract

Abstract. An advanced particle microphysics model with a number of computationally efficient schemes has been incorporated into a global chemistry transport model (GEOS-Chem) to simulate particle number size distributions and cloud condensation nuclei (CCN) concentrations in the atmosphere. Size-resolved microphysics for secondary particles (i.e., those formed from gaseous species) and sea salt has been treated in the present study. The growth of nucleated particles through the condensation of sulfuric acid vapor and equilibrium uptake of nitrate, ammonium, and secondary organic aerosol is explicitly simulated, along with the scavenging of secondary particles by primary particles (dust, black carbon, organic carbon, and sea salt). We calculate secondary particle formation rate based on ion-mediated nucleation (IMN) mechanism and constrain the parameterizations of primary particle emissions with various observations. Our simulations indicate that secondary particles formed via IMN appear to be able to account for the particle number concentrations observed in many parts of the troposphere. A comparison of the simulated annual mean concentrations of condensation nuclei larger than 10 nm (CN10) with those measured values show very good agreement (within a factor of two) in near all 22 sites around the globe that have at least one full year of CN10 measurements. Secondary particles appear to dominate the number abundance in most parts of the troposphere. Calculated CCN concentration at supersaturation of 0.4% (CCN0.4) and the fraction of CCN0.4 that is secondary (fsecCCN) have large spatial variations. Over the middle latitude in the Northern Hemisphere, zonally averaged CCN0.4 decreases from ~400–700 cm−3 in the boundary layer (BL) to below 100 cm−3 above altitude of ~4 km, the corresponding fsecCCN values change from 50–60% to above ~70%. In the Southern Hemisphere, the zonally averaged CCN0.4 is below 200 cm−3 and fsecCCN is generally above 60% except in the BL over the Southern Ocean.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3