Seasonal and inter-annual variability of water column properties along the Rottnest continental shelf, south-west Australia

Author:

Chen Miaoju,Pattiaratchi Charitha B.ORCID,Ghadouani AnasORCID,Hanson Christine

Abstract

Abstract. A multi-year ocean glider dataset, obtained along a representative cross-shelf transect along the Rottnest continental shelf, south-west Australia, was used to characterise the seasonal and inter-annual variability of water column properties (temperature, salinity, and chlorophyll fluorescence distribution). All three variables showed distinct seasonal and inter-annual variations that were related to local and basin-scale ocean atmosphere processes. Controlling influences for the variability were attributed to forcing from two spatial scales: (1) the local scale (due to Leeuwin Current and dense shelf water cascades, DSWC) and (2) the basin scale (El Niño–Southern Oscillation, ENSO, events). In spring and summer, inner-shelf waters were well mixed due to strong wind mixing, and deeper waters (>50 m) were vertically stratified in temperature that contributed to the presence of a subsurface chlorophyll maximum (SCM). On the inner shelf, chlorophyll fluorescence concentrations were highest in autumn and winter. DSWCs were also the main physical feature during autumn and winter. Chlorophyll fluorescence concentration was higher closer to the seabed than at the surface in spring, summer, and autumn. The seasonal patterns coincided with changes in the wind field (weaker winds in autumn) and air–sea fluxes (winter cooling and summer evaporation). Inter-annual variation was associated with ENSO events. Lower temperatures, higher salinity, and higher chlorophyll fluorescence (>1 mg m−3) were associated with the El Niño event in 2010. During the strong La Niña event in 2011, temperatures increased and salinity and chlorophyll fluorescence decreased (<1 mg m−3). It is concluded that the observed seasonal and inter-annual variabilities in chlorophyll fluorescence concentrations were related to the changes in physical forcing (wind forcing, Leeuwin Current, and air–sea heat and moisture fluxes).

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference64 articles.

1. AODN Portal: Australian Ocean Data Network, https://portal.aodn.org.au/, last access: 29 March 2019.

2. Beck, M.: Defining a multi-parameter optics-based approach for estimating Chlorophyll a concentration using ocean gliders, Unpubl. MSc Thesis, Dalhousie University, Dalhousie, Canada, 2016.

3. Cebrián, J. and Valiela, I.: Seasonal patterns in phytoplankton biomass in coastal ecosystems, J. Plankton Res., 21, 429–444, https://doi.org/10.1093/plankt/21.3.429, 1999.

4. Chen, D., He, L., Liu, F., and Yin, K.: Effects of typhoon events on chlorophyll and carbon fixation in different regions of the East China Sea, Estuar. Coast. Shelf Sci., 194, 229–239, https://doi.org/10.1016/j.ecss.2017.06.026, 2017.

5. Chen, M.: Chlorophyll response to physical forcing on the Rottnest Continental Shelf, PhD thesis, https://doi.org/10.26182/5be53372b96b3, 2017.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3