Equatorial transport as diagnosed from nitrous oxide variability

Author:

Ricaud P.,Pommereau J.-P.,Attié J.-L.,Le Flochmoën E.,El Amraoui L.,Teyssèdre H.,Peuch V.-H.,Feng W.,Chipperfield M. P.

Abstract

Abstract. The mechanisms of transport on annual, semi-annual and quasi-biennial time scales in the equatorial (10° S–10° N) stratosphere are investigated using the nitrous oxide (N2O) measurements of the space-borne ODIN Sub-Millimetre Radiometer from November 2001 to June 2005, and the simulations of the three-dimensional chemical transport models MOCAGE and SLIMCAT. Both models are forced with analyses from the European Centre for Medium-range Weather Forecast, but the vertical transport is derived either from the forcing analyses by solving the continuity equation (MOCAGE), or from diabatic heating rates using a radiation scheme (SLIMCAT). The N2O variations in the mid-to-upper stratosphere at levels above 32 hPa are generally well captured by the models though significant differences appear with the observations as well as between the models, attributed to the difficulty of capturing correctly the slow upwelling associated with the Brewer-Dobson circulation. However, in the lower stratosphere, below 32 hPa, the observed variations are shown to be mainly seasonal with peak amplitude at 400–450 K (~17.5–19 km), totally missed by the models. The minimum N2O in June, out of phase by two months with the known minimum seasonal upwelling associated with the Brewer-Dobson circulation and moreover amplified over the Western Pacific compared to Africa is incompatible with the seasonal change of upwelling evoked to explain the O3 annual cycle in the same altitude range (Randel et al., 2007). Unless the 1.5 ppbv amplitude of N2O annual cycle in the upper troposphere is totally wrong, the explanation of the observed N2O annual cycle of 15 ppbv in the lower stratosphere requires another mechanism. A possible candidate for that might be the existence of a downward time-averaged mass flux above specific regions, as shown by Sherwood (2000) over Indonesia, required for compensating the energy sink resulting from the deep overshooting of cold and heavy air at high altitude over intense convective areas. But, since global models do currently not capture this subsidence, it must be recognised that a full explanation of the observations cannot be provided for the moment. However, the coincidence of the peak contrast between the Western Pacific and Africa with the maximum overshooting volume in May reported by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, suggests a strong influence of deep convection on the chemical composition of the tropical lower stratosphere up to 500 K (21 km).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3