Chemical properties, sources and size-resolved hygroscopicity of submicron black-carbon-containing aerosols in urban Shanghai
-
Published:2022-06-22
Issue:12
Volume:22
Page:8073-8096
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Cui Shijie, Huang Dan Dan, Wu Yangzhou, Wang Junfeng, Shen Fuzhen, Xian Jiukun, Zhang YunjiangORCID, Wang Hongli, Huang ChengORCID, Liao Hong, Ge XinleiORCID
Abstract
Abstract. Refractory black carbon (rBC) aerosols play an important role in
air quality and climate change, yet highly time-resolved and detailed
investigations on the physicochemical properties of rBC and its associated
coating are still scarce. In this work, we used a laser-only Aerodyne soot
particle aerosol mass spectrometer (SP-AMS) to exclusively measure
rBC-containing (rBCc) particles, and we compared their properties with those of the total nonrefractory submicron particles (NR-PM1) measured in parallel by a high-resolution AMS (HR-AMS) in Shanghai. Observations showed that, overall, rBC was thickly coated, with an average mass ratio of coating to rBC core (RBC) of ∼5.0 (±1.7). However, the ratio of the mass of the rBC-coating species to the mass of those species in NR-PM1 was only 19.1 (±4.9) %; sulfate tended to condense preferentially on non-rBC particles, so the ratio of the sulfate on rBC to the NR-PM1 sulfate was only 7.4 (±2.2) %, while the majority (72.7±21.0 %) of the primary organic aerosols (POA) were associated with rBC. Positive matrix factorization revealed that organics emitted from cooking did not coat rBC, and a portion of the organics that coated rBC was from biomass burning; such organics were unidentifiable in NR-PM1. Small rBCc particles were predominantly from traffic, while large-sized ones were often mixed with secondary components and typically had a thick coating. Sulfate and secondary organic aerosol (SOA) species were generated mainly through daytime photochemical oxidation (SOA formation, likely associated with in situ chemical conversion of traffic-related POA to SOA), while nocturnal heterogeneous formation was dominant for nitrate; we also estimated an average time of 5–19 h for those secondary species to coat rBC.
During a short period that was affected by ship emissions, particles were
characterized as having a high vanadium concentration (on average 6.3±3.1 ng m−3) and a mean vanadium/nickel mass ratio of 2.0 (±0.6). Furthermore, the size-resolved hygroscopicity parameter
(κrBCc) of rBCc particles was obtained based on their full chemical characterization, and was parameterized as κrBCc(x)=0.29–0.14 × exp(-0.006×x) (where x ranges from 150 to 1000 nm). Under critical supersaturations (SSC) of 0.1 % and 0.2 %, the D50 values were
166 (±16) and 110 (±5) nm, respectively, and 16 (±3) % and 59 (±4) %, respectively, of the rBCc particles by number could be activated into cloud condensation nuclei (CCN). Our findings are valuable for advancing the understanding of BC chemistry as well as the effective control of atmospheric BC pollution.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference95 articles.
1. Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A.,
Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun,
Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M.
R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy,
J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios
of primary, secondary, and ambient organic aerosols with high-resolution
time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42,
4478–4485, https://doi.org/10.1021/es703009q, 2008. 2. Ault, A. P., Moore, M. J., Furutani, H., and Prather, K. A.: Impact of
emissions from the Los Angeles port region on San Diego air quality during
regional transport events, Environ. Sci. Technol., 43, 3500–3506, https://doi.org/10.1021/es8018918, 2009. 3. Ault, A. P., Gaston, C. I., Ying, W., Gerardo, D., Thiemens, M. H., and
Prather, K. A.: Characterization of the single particle mixing state of
individual ship plume events measured at the Port of Los Angeles, Environ.
Sci. Technol., 44, 1954–1961, https://doi.org/10.1021/es902985h, 2010. 4. Becagli, S., Anello, F., Bommarito, C., Cassola, F., Calzolai, G., Di Iorio,
T., di Sarra, A., Gómez-Amo, J.-L., Lucarelli, F., Marconi, M., Meloni,
D., Monteleone, F., Nava, S., Pace, G., Severi, M., Sferlazzo, D. M.,
Traversi, R., and Udisti, R.: Constraining the ship contribution to the
aerosol of the central Mediterranean, Atmos. Chem. Phys., 17, 2067–2084,
https://doi.org/10.5194/acp-17-2067-2017, 2017. 5. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|