On the cross-tropopause transport of water by tropical convective overshoots: a mesoscale modelling study constrained by in situ observations during the TRO-Pico field campaign in Brazil

Author:

Behera Abhinna K.ORCID,Rivière Emmanuel D.,Khaykin Sergey M.ORCID,Marécal VirginieORCID,Ghysels Mélanie,Burgalat Jérémie,Held Gerhard

Abstract

Abstract. Deep convection overshooting the lowermost stratosphere is well known for its role in the local stratospheric water vapour (WV) budget. While it is seldom the case, local enhancement of WV associated with stratospheric overshoots is often published. Nevertheless, one debatable topic persists regarding the global impact of this event with respect to the temperature-driven dehydration of air parcels entering the stratosphere. As a first step, it is critical to quantify their role at a cloud-resolving scale before assessing their impact on a large scale in a climate model. It would lead to a nudging scheme for large-scale simulation of overshoots. This paper reports on the local enhancements of WV linked to stratospheric overshoots, observed during the TRO-Pico campaign conducted in March 2012 in Bauru, Brazil, using the BRAMS (Brazilian version of the Regional Atmospheric Modeling System; RAMS) mesoscale model. Since numerical simulations depend on the choice of several preferred parameters, each having its uncertainties, we vary the microphysics or the vertical resolution while simulating the overshoots. Thus, we produce a set of simulations illustrating the possible variations in representing the stratospheric overshoots. To better resolve the stratospheric hydration, we opt for simulations with the 800 m horizontal-grid-point presentation. Next, we validate these simulations against the Bauru S-band radar echo tops and the TRO-Pico balloon-borne observations of WV and particles. Two of the three simulations' setups yield results compatible with the TRO-Pico observations. From these two simulations, we determine approximately 333–2000 t of WV mass prevailing in the stratosphere due to an overshooting plume depending on the simulation setup. About 70 % of the ice mass remains between the 380 and 385 K isentropic levels. The overshooting top comprises pristine ice and snow, while aggregates only play a role just above the tropopause. Interestingly, the horizontal cross section of the overshooting top is about 450 km2 at the 380 K isentrope, which is similar to the horizontal-grid-point resolution of a simulation that cannot compute overshoots explicitly. In a large-scale simulation, these findings could provide guidance for a nudging scheme of overshooting hydration or dehydration.

Funder

Centre National de la Recherche Scientifique

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3