A machine learning approach to quantify meteorological drivers of ozone pollution in China from 2015 to 2019

Author:

Weng Xiang,Forster Grant L.ORCID,Nowack PeerORCID

Abstract

Abstract. Surface ozone concentrations increased in many regions of China from 2015 to 2019. While the central role of meteorology in modulating ozone pollution is widely acknowledged, its quantitative contribution remains highly uncertain. Here, we use a data-driven machine learning approach to assess the impacts of meteorology on surface ozone variations in China for the period 2015–2019, considering the months of highest ozone pollution from April to October. To quantify the importance of various meteorological driver variables, we apply nonlinear random forest regression (RFR) and linear ridge regression (RR) to learn about the relationship between meteorological variability and surface ozone in China, and contrast the results to those obtained with the widely used multiple linear regression (MLR) and stepwise MLR. We show that RFR outperforms the three linear methods when predicting ozone using local meteorological predictor variables, as evident from its higher coefficients of determination (R2) with observations (0.5–0.6 across China) when compared to the linear methods (typically R2 = 0.4–0.5). This refers to the importance of nonlinear relationships between local meteorological factors and ozone, which are not captured by linear regression algorithms. In addition, we find that including nonlocal meteorological predictors can further improve the modelling skill of RR, particularly for southern China where the averaged R2 increases from 0.47 to 0.6. Moreover, this improved RR shows a higher averaged meteorological contribution to the increased trend of ozone pollution in that region, pointing towards an elevated importance of large-scale meteorological phenomena for ozone pollution in southern China. Overall, RFR and RR are in close agreement concerning the leading meteorological drivers behind regional ozone pollution. In line with expectations, our analysis underlines that hot and dry weather conditions with high sunlight intensity are strongly related to high ozone pollution across China, thus further validating our novel approach. In contrast to previous studies, we also highlight surface solar radiation as a key meteorological variable to be considered in future analyses. By comparing our meteorology based predictions with observed ozone values between 2015 and 2019, we estimate that almost half of the 2015–2019 ozone trends across China might have been caused by meteorological variability. These insights are of particular importance given possible increases in the frequency and intensity of weather extremes such as heatwaves under climate change.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3