Impacts of active satellite sensors' low-level cloud detection limitations on cloud radiative forcing in the Arctic
-
Published:2022-06-23
Issue:12
Volume:22
Page:8151-8173
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Abstract
Abstract. Previous studies revealed that satellites sensors with the best detection capability identify 25 %–40 % and 0 %–25 % fewer clouds below 0.5 and between 0.5–1.0 km, respectively, over the Arctic. Quantifying the impacts of cloud detection limitations on the radiation flux are critical especially over the Arctic Ocean considering the dramatic changes in Arctic sea ice. In this study, the proxies of the space-based radar, CloudSat, and lidar, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), cloud masks are derived based on simulated radar reflectivity with QuickBeam and cloud optical thickness using retrieved cloud properties from surface-based radar and lidar during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Limitations in low-level cloud detection by the space-based active sensors, and the impact of these limitations on the radiation fluxes at the surface and the top of the atmosphere (TOA), are estimated with radiative transfer model Streamer. The results show that the combined CloudSat and CALIPSO product generally detects all clouds above 1 km, while detecting 25 % (9 %) fewer in absolute values below 600 m (600 m to 1 km) than surface observations. These detection limitations lead to uncertainties in the monthly mean cloud radiative forcing (CRF), with maximum absolute monthly mean values of 2.5 and 3.4 Wm−2 at the surface and TOA, respectively. Cloud information from only CALIPSO or CloudSat lead to larger cloud detection differences compared to the surface observations and larger CRF uncertainties with absolute monthly means larger than 10.0 Wm−2 at the surface and TOA. The uncertainties for individual cases are larger – up to 30 Wm−2. These uncertainties need to be considered when radiation flux products from CloudSat and CALIPSO are used in climate and weather studies.
Funder
National Environmental Satellite, Data, and Information Service
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference68 articles.
1. Arias, P. A., Bellouin, N., Coppola, E., Jones, R. G., Krinner, G., Marotzke, J.,
Naik, V., Palmer, M. D., Plattner, G.-K., Rogelj, J.,
Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P. W., Trewin, B., Achuta Rao, K.,
Adhikary, B., Allan, R. P., Armour, K., Bala, G.,
Barimalala, R., Berger, S., Canadell, J. G., Cassou, C., Cherchi, A., Collins, W.,
Collins, W. D., Connors, S. L., Corti, S., Cruz, F.,
Dentener, F. J., Dereczynski, C., Di Luca, A., Diongue Niang, A.,
Doblas-Reyes, F. J., Dosio, A., Douville, H., Engelbrecht, F.,
Eyring, V., Fischer, E., Forster, P., Fox-Kemper, B., Fuglestvedt, J. S.,
Fyfe, J. C., Gillett, N. P., Goldfarb, L., Gorodetskaya, I.,
Gutierrez, J. M., Hamdi, R., Hawkins, E., Hewitt, H. T., Hope, P., Islam, A. S.,
Jones, C., Kaufman, D. S., Kopp, R. E., Kosaka, Y.,
Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock, T. K.,
Meinshausen, M., Min, S.-K., Monteiro, P. M. S.,
Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A., Raghavan, K., Ranasinghe, R.,
Ruane, A. C., Ruiz, L., Sallée, J.-B., Samset, B. H.,
Sathyendranath, S., Seneviratne, S. I., Sörensson, A. A., Szopa, S.,
Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vautard, R.,
von Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld, K.: Technical
Summary, in: Climate Change 2021: The
Physical Science Basis, Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.:
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
33–144,
2021. 2. Blanchard, Y., Pelon, J., Eloranta, E. W., Moran, K. P., Delanoë, J., and
Sèze, G.: A Synergistic Analysis of Cloud Cover and Vertical
Distribution from A-Train and Ground-Based Sensors over the High Arctic
Station Eureka from 2006 to 2010, J. Appl. Meteorol. Clim., 53,
2553–2570, https://doi.org/10.1175/JAMC-D-14-0021.1, 2014. 3. Blanchard, Y., Pelon, J., Cox, C. J., Delanoë, J., Eloranta, E. W., and
Uttal, T.: Comparison of TOA and BOA LW Radiation Fluxes Inferred From
Ground-Based Sensors, A-Train Satellite Observations and ERA Reanalyzes at
the High Arctic Station Eureka Over the 2002–2020 Period,
J. Geophys. Res.-Atmos., 126, e2020JD033615, https://doi.org/10.1029/2020JD033615, 2021. 4. Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L.,
Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John,
V. O.: COSP: Satellite simulation software for model assessment,
B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011. 5. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, Climate Change 2013: The
Physical Science Basis, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University
Press, 571–657, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|