Abstract
Abstract. In the last decades several convection parameterisations have been developed to consider the impact of small-scale unresolved processes in Earth System Models associated with convective clouds. Global model simulations, which have been performed under current climate conditions with different convection schemes, significantly differ among each other in the simulated transport of trace gases and precipitation patterns due to the parameterisation assumptions and formulations, e.g. the computation of convective rainfall rates, calculation of entrainment and detrainment rates etc. Here we address sensitivity studies comparing four different convection schemes under alternative climate conditions (with doubling of the CO2 concentrations) to identify uncertainties related to convective processes. The increase in surface temperature reveals regional differences up to 4 K dependent on the chosen convection parameterisation. These differences are statistically significant almost everywhere in the troposphere of the intertropical convergence zone. The increase in upper tropospheric temperature affects the amount of water vapour transported to the lower stratosphere, leading to enhanced water vapour contents between 40% and 60% at the cold point temperature in the Tropics. Furthermore, the change in transporting short-lived pollutants within the atmosphere is highly ambiguous for the lower and upper troposphere. These results reflect that different approaches to compute mass fluxes, detrainment levels or trigger functions determine the transport of short-lived trace gases from the planetary boundary layer to lower, middle or upper tropospheric levels. Finally, cloud radiative effects have been analysed, uncovering a shift in different cloud types in the Tropics, especially for cirrus and deep convective clouds. These cloud types induce a change in net cloud radiative forcing varying from 0.5 W m−2 to 2.0 W m−2.
Reference70 articles.
1. Allen, D. J., Rood, R. B., Thompson, A. M., and Hudson, R. D.: Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm, J. Geophys. Res.-Atmos., 101, 6871–6881, https://doi.org/10.1029/95JD03408, 1996.
2. Arakawa, A.: The cumulus parameterization problem: Past, present, and future, J. Climate, 17, 2493–2525, https://doi.org/10.1175/1520-0442(2004)0172.0.CO;2, 2004.
3. Arakawa, A. and Schubert, W. H.: Interaction of A Cumulus Cloud Ensemble With Large-scale Environment .1., J. Atmos. Sci., 31, 674–701, https://doi.org/10.1175/1520-0469(1974)0312.0.CO;2, 1974.
4. Barker, H. W. and Raisanen, P.: Radiative sensitivities for cloud structural properties that are unresolved by conventional GCMs, Q. J. Roy. Meteorol. Soc., 131, 3103–3122, https://doi.org/10.1256/qj.04.174, 2005.
5. Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass-flux convection scheme for regional and global models, Q. J. Roy. Meteorol. Soc., 127, 869–886, https://doi.org/10.1256/smsqj.57308, 2001.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献