Global emission projections for the transportation sector using dynamic technology modeling

Author:

Yan F.ORCID,Winijkul E.,Streets D. G.,Lu Z.,Bond T. C.,Zhang Y.

Abstract

Abstract. In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable detail on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC (Intergovernmental Panel on Climate Change) scenarios (A1B, A2, B1, and B2). With global fossil-fuel use (oil and coal) in the transportation sector in the range of 128–171 EJ across the four scenarios, global emissions are projected to be 101–138 Tg of carbon monoxide (CO), 44–54 Tg of nitrogen oxides (NOx), 14–18 Tg of non-methane total hydrocarbons (THC), and 3.6–4.4 Tg of particulate matter (PM) in the year 2030. At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010–2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to global CO and THC emissions in the year 2010; this dominance shifts to Africa and South Asia in the future. By the year 2050, for CO and THC emissions, non-road engines contribute the greatest fraction in Asia and the former USSR, while on-road vehicles make the largest contribution in Latin America, Africa, and the Middle East; for NOx and PM emissions, shipping controls the trend in most regions. These forecasts include a formal treatment of the factors that drive technology choices in the global vehicle sector and therefore represent a robust and plausible projection of what future emissions may be. These results have important implications for emissions of gases and aerosols that influence air quality, human health, and climate change.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference115 articles.

1. Arora, S., Vyas, A., and Johnson, L. R.: Projections of highway vehicle population, energy demand, and CO2 emissions in India to 2040, Nat. Resour. Forum, 35, 49–62, 2011.

2. Balkanski, Y., Myhre, G., Gauss, M., Rädel, G., Highwood, E. J., and Shine, K. P.: Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation, Atmos. Chem. Phys., 10, 4477–4489, https://doi.org/10.5194/acp-10-4477-2010, 2010.

3. Ban-Weiss, G. A., Lunden, M. M., Kirchstetter, T. W., and Harley, R. A.: Measurement of black carbon and particle number emission factors from individual heavy-duty trucks, Environ. Sci. Technol., 43, 1419–1424, 2009.

4. Baughcum, S. L., Begin, J. J., Franco, F., Greene, D. L., Lee, D. S., McLaren, M.-L., Mortlock, A. K., Newton, P. J., Schmitt, A., Sutkus, D. J., Vedantham, A., and Wuebbles, D. J.: Aircraft Emissions?: Current Inventories and Future Scenarios, Chapter 9 of "Aviation and the Global Atmosphere", edited by: Penner, J. E., Lister, D. H., Griggs, D. J., Dokken, D. J., and McFarland, M., Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1999.

5. Bek, B. H. and Sorenson, S. C.: Future emissions from railway traffic report for the project MEET?: Methodologies for estimating air pollutant emissions from transport, ET-EO-98-02, Technical University of Denmark, Lyngby, Denmark, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3