Characterizing ozone production in the Mexico City Metropolitan Area: a case study using a chemical transport model
-
Published:2007-02-27
Issue:5
Volume:7
Page:1347-1366
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Lei W.,de Foy B.,Zavala M.,Volkamer R.,Molina L. T.
Abstract
Abstract. An episodic simulation is conducted to characterize midday (12:00–17:00 CDT) ozone (O3) photochemical production and to investigate its sensitivity to emission changes of ozone precursors in the Mexico City Metropolitan Area (MCMA) during an "O3-South" meteorological episode using the Comprehensive Air Quality Model with extensions (CAMx). High Ox (O3+NO2) photochemical production rates of 10–80 ppb/h are predicted due to the high reactivity of volatile organic compounds (VOCs) in which alkanes, alkenes, and aromatics exert comparable contributions. The predicted ozone production efficiency is between 4–10 O3 molecules per NOx molecule oxidized, and increases with VOC-to-NO2 reactivity ratio. Process apportionment analyses indicate significant outflow of pollutants such as O3 and peroxyacetyl nitrate (PAN) from the urban area to the surrounding regional environment. PAN is not in chemical-thermal equilibrium during the photochemically active periods. Sensitivity studies of O3 production suggest that O3 formation in the MCMA urban region with less chemical aging (NOz/NOy<0.3) is VOC-limited. Both the simulated behavior of O3 production and its sensitivities to precursors suggest that midday O3 formation during this episode is VOC-sensitive in the urban region on the basis of the current emissions inventory estimates, and current NOx levels depress the O3 production.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference71 articles.
1. Arriaga-Colina, J. L., West, J. J., Sosa, G., Escalona, S. S., Ord\\'uñez, R. M., and Cervantes, A. D. M.: Measurements of VOCs in Mexico City (1992–2001) and evaluation of VOCs and CO in the emissions inventory, Atmos. Environ., 38, 2523–2533, 2004. 2. Baumgardner, D., Raga, G. B., Kok, G., Ogren, J., Rosas, I., Báez, A., and Novakov, T.: On the evolution of aerosol properties at a mountain site above Mexico City, J. Geophys. Res., 105, 22 243–22 254, 2000. 3. CAM (Comisión Ambiental Metropolitana): Inventario de Emisiones 2002 de la Zona Metropolitana del Valle de México, México, 2004. 4. Carter, W. P. L.: Development of ozone reactivity scales for volatile organic compounds, J. Air Waste Manage. Assoc., 44, 881–899, 1994. 5. Carter, W. P. L.: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity, final report to California Air Resources Board, Contract 92-329 and 95-308, Calif. Air Res. Board, Sacramento, Calif., 2000.
Cited by
152 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|