Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2

Author:

Rognes M. E.,Ham D. A.ORCID,Cotter C. J.,McRae A. T. T.

Abstract

Abstract. Differential equations posed over immersed manifolds are of particular importance in studying geophysical flows; for instance, ocean and atmosphere simulations crucially rely on the capability to solve equations over the sphere. This paper presents the extension of the FEniCS software components to the automated solution of finite element formulations of differential equations defined over general, immersed manifolds. We describe the implementation and, in particular detail, how the required extensions essentially reduce to the extension of the FEniCS form compiler to cover this case. The resulting implementation has all the properties of the FEniCS pipeline and we demonstrate its flexibility by an extensive range of numerical examples covering a number of geophysical benchmark examples and test cases. The results are all in agreement with the expected values. The description here relates to DOLFIN/FEniCS 1.2.

Publisher

Copernicus GmbH

Reference42 articles.

1. Alnæs, M. S.: UFL: a finite element form language, in: Automated Solution of Differential Equations by the Finite Element Method, vol. 84 of Lecture Notes in Computational Science and Engineering, edited by: Logg, A., Mardal, K.-A., and Wells, G. N., chap. 17, Springer, 2012.

2. Alnæs, M. S., Logg, A., Mardal, K.-A., Skavhaug, O., and Langtangen, H. P.: Unified Framework for Finite Element Assembly, Int. J. Computat. Sci. Eng., 4, 231–244, https://doi.org/10.1504/IJCSE.2009.029160, 2009.

3. Alnæs, M. S., Logg, A., and Mardal, K.-A.: UFC: a finite element code generation interface, in: Automated Solution of Differential Equations by the Finite Element Method, Volume 84 of Lecture Notes in Computational Science and Engineering, edited by: Logg, A., Mardal, K.-A., and Wells, G. N., chap. 16, Springer, 2012.

4. Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified Form Language: a domain-specific language for weak formulations of partial differential equations, ACM Trans. Mathe. Softw., available at: http://arxiv.org/abs/1211.4047 (last access: 13 December 2013), 2013.

5. Arakawa, A. and Hsu, Y.-J. G.: Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations, Mon. Weather Rev., 118, 1960–1969, 1990.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3