Electricity vs Ecosystems – understanding and predicting hydropower impact on Swedish river flow

Author:

Arheimer B.,Lindström G.

Abstract

Abstract. The most radical anthropogenic impact on water systems in Sweden originates from the years 1900–1970, when the electricity network was developed in the country and almost all rivers were regulated. The construction of dams and changes in water flow caused problems for ecosystems. Therefore, when implementing the EU Water Framework Directive (WFD) hydro-morphological indicators and targets were developed for rivers and lakes to achieve good ecological potential. The hydrological regime is one such indicator. To understand the change in flow regime we quantified the hydropower impact on river flow across Sweden by using the S-HYPE model and observations. The results show that the average redistribution of water during a year due to regulation is 19 % for the total discharge from Sweden. A distinct impact was found in seasonal flow patterns and flow duration curves. Moreover, we quantified the model skills in predicting hydropower impact on flow. The median NSE for simulating change in flow regime was 0.71 for eight dams studied. Results from the spatially distributed model are available for 37 000 sub-basins across the country, and will be used by the Swedish water authorities for reporting hydro-morphological indicators to the EU and for guiding the allocation of river restoration measures.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3