Modelling the NO emissions from wildfires at the source level

Author:

Pérez-Ramirez Y.,Santoni P.-A.,Darabiha N.

Abstract

Abstract. There is a growing interest to characterize fire plumes in order to control air quality during wildfire episodes and to estimate the carbon and ozone balance of fire emissions. A numerical approach has been used to study the mechanisms of NO formation at the source level in wildfires given that NO plays an important role in the formation of ground-level ozone. The major reaction mechanisms involved in NO chemistry have been identified using reaction path analysis. Accordingly, a two-step global kinetic scheme in the gas phase has been proposed herein to account for the volatile fuel-bound nitrogen (fuel-N) conversion to NO, considering that the volatile fraction of fuel-N is released as NH3. Data from simulations using the perfectly stirred reactor (PSR) code from CHEMKIN-II package with a detailed kinetic mechanism (GDF-Kin® 3.0) have been used to calibrate and evaluate the global model under typical wildfire conditions in terms of the composition of the degradation gases of vegetation, the equivalence ratio, the range of temperatures and the residence time.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3