Recent land subsidence caused by the rapid urban development in the Hanoi region (Vietnam) using ALOS InSAR data
-
Published:2014-03-25
Issue:3
Volume:14
Page:657-674
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Dang V. K.,Doubre C.,Weber C.,Gourmelen N.,Masson F.
Abstract
Abstract. Since the 1990s the land subsidence due to the rapid urbanization has been considered a severely destructive hazard in the center of Hanoi City. Although previous studies and measurements have quantified the subsiding deformation in Hanoi center, no data exist for the newly established districts in the south and the west, where construction development has been most significant and where groundwater pumping has been very intensive over the last decade. With a multi-temporal InSAR approach, we quantify the spatial distribution of the land subsidence in the entire Hanoi urban region using ALOS images over the 2007–2011 period. The map of the mean subsidence velocity reveals that the northern bank of the Red River appears stable, whereas some areas in southern bank are subsiding with a mean vertical rate up to 68.0 mm yr−1, especially within the three new urban districts of Hoang Mai, Ha Dong – Thanh Xuan and Hoai Duc – Tu Liem. We interpret the spatial distribution of the surface deformation as the combination of the nature of the unsaturated layer, the lowering of groundwater in the aquifers due to pumping withdrawal capacity, the increase of built-up surfaces and the type of building foundation. The piezometric level in Qp aquifer lowers particularly after 2008, whereas the groundwater level in Qh aquifer remains steady, even if it loses its seasonal fluctuation in urban areas and drawdowns in neighboring water production plants. The time evolution deduced from the InSAR time series is consistent with previous leveling data and shows that the lowering rate of the surface slightly decreases till 2008. The analysis of groundwater levels in instrumented wells shows a correlation between the behavior of groundwater with the urban development and the acceleration of groundwater withdrawal. Also, the time variations suggest that the deformation became non-stationary, with upward and downward transient displacements related to the charge and discharge of the aquifers.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference100 articles.
1. Alexander, H. and Cheng, D.: Multilayered aquifer systems: fundamentals and applications, Marcel Dekker Inc., New York, 2000. 2. Amelung, F., Galloway, D., Bell, J., Zebker, H., and Laczniak, R.: Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system Geology, 27, 6, 483-486, 1999. 3. Aobpaet, A., Cuenca, M. C., Hooper, A., and Trisirisatayawong, I.: Land subsidence evaluation using InSAR time series analysis in Bangkok metropolitan area, in: Fringe 2009 Workshop, edited by: Lacoste-Francis, H., Frascati, Italy, 30 November–4 December 2009, s12_16aob, ESA Communications, 2010. 4. Bell, J. W., Amelung, F., Ramelli, A. R., and Blewitt, G.: Land Subsidence in Las Vegas, Nevada, 1935–2000: New Geodetic Data Show Evolution, Revised Spatial Patterns, and Reduced Rates, Geol. Soc. Am., 8, 155–174, https://doi.org/10.2113/8.3.155, 2002. 5. Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms IEEE T. Geosci. Remote, 40, 2375–2383, 2002.
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|