Effect of increased <i>p</i>CO<sub>2</sub> level on early shell development in great scallop (<i>Pecten maximus</i> Lamarck) larvae
-
Published:2013-10-01
Issue:10
Volume:10
Page:6161-6184
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Andersen S.,Grefsrud E. S.,Harboe T.
Abstract
Abstract. As a result of high anthropogenic CO2 emissions, the concentration of CO2 in the oceans has increased, causing a decrease in pH, known as ocean acidification (OA). Numerous studies have shown negative effects on marine invertebrates, and also that the early life stages are the most sensitive to OA. We studied the effects of OA on embryos and unfed larvae of the great scallop (Pecten maximus Lamarck), at pCO2 levels of 469 (ambient), 807, 1164, and 1599 μatm until seven days after fertilization. To our knowledge, this is the first study on OA effects on larvae of this species. A drop in pCO2 level the first 12 h was observed in the elevated pCO2 groups due to a discontinuation in water flow to avoid escape of embryos. When the flow was restarted, pCO2 level stabilized and was significantly different between all groups. OA affected both survival and shell growth negatively after seven days. Survival was reduced from 45% in the ambient group to 12% in the highest pCO2 group. Shell length and height were reduced by 8 and 15%, respectively, when pCO2 increased from ambient to 1599 μatm. Development of normal hinges was negatively affected by elevated pCO2 levels in both trochophore larvae after two days and veliger larvae after seven days. After seven days, deformities in the shell hinge were more connected to elevated pCO2 levels than deformities in the shell edge. Embryos stained with calcein showed fluorescence in the newly formed shell area, indicating calcification of the shell at the early trochophore stage between one and two days after fertilization. Our results show that P. maximus embryos and early larvae may be negatively affected by elevated pCO2 levels within the range of what is projected towards year 2250, although the initial drop in pCO2 level may have overestimated the effect of the highest pCO2 levels. Future work should focus on long-term effects on this species from hatching, throughout the larval stages, and further into the juvenile and adult stages.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference84 articles.
1. Andersen, S., Christophersen, G., and Magnesen, T.: Spat production of the great scallop (Pecten maximus): a roller coaster, Can. J. Zool., 89, 585–604, https://doi.org/10.1139/z11-035, 2011. 2. Andersen, S., Christophersen, G., and Magnesen, T.: Implications of larval diet concentration on post-larval yield in a production scale flow through system for scallops (Pecten maximus Lamarck) in Norway, Aquacult. Int., 15, 1–18, https://doi.org/10.1007/s10499-012-9570-0, 2012. 3. Barros, P., Sobral, P., Range, P., Chícharo, L., and Matias, D.: Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas, J. Exp. Mar. Biol. Ecol., 440, 200–206, https://doi.org/10.1016/j.jembe.2012.12.014, 2013. 4. Bechmann, R. K., Taban, I. C., Westerlund, S., Godal B. F., Arnberg, M., Vingen, S., Ingvarsdottir, A., and Baussant, T.: Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis), J. Toxicol. Env. Heal. A, 74424–74438, https://doi.org/101080/15287394.2011.550460, 2011. 5. Beesley, A., Lowe, D. M., Pascoe, C. K, and Widdicombe, S.: Effects of CO2-induced seawater acidification onthe health of Mytilus edulis, Clim. Res., 37, 215–225, https://doi.org/10.3354/cr00765, 2008.
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|