Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China
-
Published:2021-06-07
Issue:11
Volume:21
Page:8531-8555
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhou YueORCID, West Christopher P.ORCID, Hettiyadura Anusha P. S., Niu Xiaoying, Wen Hui, Cui JiecanORCID, Shi TenglongORCID, Pu Wei, Wang XinORCID, Laskin AlexanderORCID
Abstract
Abstract. Water-soluble organic carbon (WSOC) in the cryosphere has an important impact on the biogeochemistry cycling and snow–ice surface energy balance through changes in the surface albedo. This work reports on the chemical characterization of WSOC in 28 representative snowpack samples collected across a regional area of northern Xinjiang, northwestern China. We employed multimodal analytical chemistry techniques to investigate both bulk and molecular-level composition of WSOC and its optical properties, informing the follow-up radiative forcing (RF) modeling estimates. Based on the geographic differences and proximity of emission sources, the snowpack collection sites were grouped as urban/industrial (U), rural/remote (R), and soil-influenced (S) sites, for which average WSOC total mass loadings were measured as 1968 ± 953 ng g−1 (U),
885 ± 328 ng g−1 (R), and 2082 ± 1438 ng g−1 (S), respectively. The S sites showed the higher mass absorption coefficients at 365 nm (MAC365) of 0.94 ± 0.31 m2 g−1 compared to those of U and R sites (0.39 ± 0.11 m2 g−1 and 0.38 ± 0.12 m2 g−1, respectively). Bulk composition of WSOC in the snowpack samples and its basic source apportionment was inferred from the excitation–emission matrices and the parallel factor analysis featuring relative contributions of one protein-like (PRLIS) and two humic-like (HULIS-1 and HULIS-2) components with ratios specific to each of the S, U, and R sites. Additionally, a sample from site 120 showed unique pollutant concentrations and spectroscopic features remarkably different from all other U, R, and S samples. Molecular-level characterization of WSOC using high-resolution mass spectrometry (HRMS) provided further insights into chemical differences among four types of samples (U, R, S, and 120). Specifically, many reduced-sulfur-containing species with high degrees of unsaturation and aromaticity were uniquely identified in U samples, suggesting an anthropogenic source. Aliphatic/protein-like species showed the highest contribution in R samples, indicating their biogenic origin. The WSOC components from S samples showed high oxygenation and saturation levels. A few unique CHON and CHONS compounds with high unsaturation degree and molecular weight were detected in the 120 sample, which might be anthraquinone derivatives from plant debris. Modeling of the WSOC-induced RF values showed warming effects of 0.04 to 0.59 W m−2 among different groups of sites, which contribute up to 16 % of that caused by black carbon (BC), demonstrating the important influences of WSOC on the snow energy budget.
Funder
National Natural Science Foundation of China Purdue Climate Change Research Center, Purdue University U.S. Department of Energy
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference144 articles.
1. Amoroso, A., Domine, F., Esposito, G., Morin, S., Savarino, J., Nardino, M., Montagnoli, M., Bonneville, J. M., Clement, J. C., Ianniello, A., and Beine, H. J.:
Microorganisms in Dry Polar Snow Are Involved in the Exchanges of Reactive Nitrogen Species with the Atmosphere,
Environ. Sci. Technol.,
44, 714–719, https://doi.org/10.1021/es9027309, 2010. 2. Anastasio, C. and Robles, T.:
Light absorption by soluble chemical species in Arctic and Antarctic snow,
J. Geophys. Res.-Atmos.,
112, D24304, https://doi.org/10.1029/2007JD008695, 2007. 3. Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. 4. Antony, R., Grannas, A. M., Willoughby, A. S., Sleighter, R. L., Thamban, M., and Hatcher, P. G.:
Origin and Sources of Dissolved Organic Matter in Snow on the East Antarctic Ice Sheet,
Environ. Sci. Technol.,
48, 6151–6159, https://doi.org/10.1021/es405246a, 2014. 5. Antony, R., Willoughby, A. S., Grannas, A. M., Catanzano, V., Sleighter, R. L., Thamban, M., Hatcher, P. G., and Nair, S.:
Molecular Insights on Dissolved Organic Matter Transformation by Supraglacial Microbial Communities,
Environ. Sci. Technol.,
51, 4328–4337, https://doi.org/10.1021/acs.est.6b05780, 2017.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|