The influence of surface charge on the coalescence of ice and dust particles in the mesosphere and lower thermosphere
-
Published:2021-06-09
Issue:11
Volume:21
Page:8735-8745
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Baptiste JoshuaORCID, Williamson Connor, Fox John, Stace Anthony J., Hassan Muhammad, Braun Stefanie, Stamm Benjamin, Mann IngridORCID, Besley ElenaORCID
Abstract
Abstract. Agglomeration of charged ice and dust particles in the mesosphere and lower
thermosphere is studied using a classical electrostatic approach, which is
extended to capture the induced polarisation of surface charge. Collision
outcomes are predicted whilst varying the particle size, charge, dielectric
constant, relative kinetic energy, collision geometry and the coefficient of restitution. In addition to Coulomb forces acting on particles of opposite charge, instances of attraction between particles of the same sign of charge are discussed. These attractive forces are governed by the polarisation of surface charge and can be strong at very small separation distances. In the mesosphere and lower thermosphere, these interactions could also contribute to the formation of stable aggregates and contamination of ice particles through collisions with meteoric smoke particles.
Funder
Norges Forskningsråd
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference30 articles.
1. Bardeen, C. G., Toon, O. B., Jensen, E. J., Marsh, D. R., and Harvey, V. L.: Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere, J. Geophys. Res.-Atmos., 113, D17202, https://doi.org/10.1029/2007JD009515, 2008. a 2. Barrington-Leigh, C. P., Inan, U. S., and Stanley, M.: Identification of sprites and elves with intensified video and broadband array photometry, J. Geophys. Res.-Space, 106, 1741–1750, https://doi.org/10.1029/2000JA000073, 2001. a 3. Baumann, C., Rapp, M., Kero, A., and Enell, C.-F.: Meteor smoke influences on the D-region charge balance – review of recent in situ measurements and one-dimensional model results, Ann. Geophys., 31, 2049–2062, https://doi.org/10.5194/angeo-31-2049-2013, 2013. a 4. Baumann, C., Rapp, M., Anttila, M., Kero, A., and Verronen, P. T.: Effects of meteoric smoke particles on the D region ion chemistry, J. Geophys. Res.-Space, 120, 10823–10839, https://doi.org/10.1002/2015JA021927, 2015. a 5. Bichoutskaia, E., Boatwright, A. L., Khachatourian, A., and Stace, A. J.: Electrostatic analysis of the interactions between charged particles of dielectric materials, J. Chem. Phys., 133, 1–10, https://doi.org/10.1063/1.3457157, 2010. a, b, c, d, e
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|