A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) Model v4.7 wet deposition estimates for 2002–2006
Author:
Appel K. W.,Foley K. M.,Bash J. O.,Pinder R. W.,Dennis R. L.,Allen D. J.,Pickering K.
Abstract
Abstract. This paper examines the operational performance of the Community Multiscale Air Quality (CMAQ) model simulations for 2002–2006 using both 36-km and 12-km horizontal grid spacing with a primary focus on the performance of the CMAQ model in predicting wet deposition of sulfate (SO4=), ammonium (NH4+) and nitrate (NO3−). Performance of the wet deposition species is determined by comparing CMAQ predicted concentrations to concentrations measured by the National Acid Deposition Program (NADP), specifically the National Trends Network (NTN). For SO4= wet deposition, the CMAQ model estimates were generally comparable between the 36-km and 12-km simulations for the eastern US, with the 12-km simulation giving slightly higher estimates of SO4= wet deposition than the 36-km simulation on average. The normalized mean bias (NMB) was slightly higher for the 12-km simulation, however, both simulations had annual biases that were less than ±15% for each of the five years. The model estimated SO4= wet deposition values improved when they were adjusted to account for biases in the model estimated precipitation. The CMAQ model underestimates NH4+ wet deposition over the eastern US using both the 36-km and 12-km horizontal grid spacing, with a slightly larger underestimation in the 36-km simulation. The largest underestimations occur during the winter and spring periods, while the summer and fall have slightly smaller underestimations of NH4+ wet deposition. Annually, the NMB generally ranges between −10% and −16% for the 12-km simulation and −12% to −18% for the 36-km simulation over the five-year period for the eastern US. The underestimation in NH4+ wet deposition is likely due, in part, to the poor temporal and spatial representation of ammonia (NH3) emissions, particularly those emissions associated with fertilizer applications and NH3 bi-directional exchange. The model performance for estimates of NO3− wet deposition are mixed throughout the year, with the model largely underestimating NO3− wet deposition in the spring and summer in the eastern US, while the model has a relatively small bias in the fall and winter. Model estimates of NO3− wet deposition tend to be slightly lower for the 36-km simulation as compared to the 12-km simulation, particularly in the spring. Annually for the eastern US, the NMB ranges from roughly −12% to −20% for the 12-km simulation and −18% to −26% for the 36-km simulation. The underestimation of NO3− wet deposition in the spring and summer is due, in part, to a lack of lightning generated NO emissions in the upper troposphere, which can be a large source of NO in the spring and summer when lightning activity is the high. CMAQ model simulations that include the production of NO from lightning show a significant improvement in the NO3− wet deposition estimates in the eastern US in the summer. Model performance for the western US was generally not as good as that for the eastern US for all three wet deposition species.
Publisher
Copernicus GmbH
Reference34 articles.
1. Allen, D. J., Pickering, K., Pinder, R. W., and Pierce, T.: Impact of Lightning-NO emissions on Eastern US Photochemistry during the Summer of 2004 as Determined using the CMAQ Model. Presented at the 8th Annual CMAS Conference, Chapel Hill, NC, 19–21 October 2009. 2. Appel, K. W., Bhave, P. V., Gilliland, A. B., Sarwar, G., and Roselle, S. J.: Evaluation of the Community Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities impacting model performance; Part II–particulate matter, Atmos. Environ., 42, 6057–6066, 2008. 3. Appel, K. W., Gilliam, R. C., Davis, N., and Zubrow, A.: Overview of the Atmospheric Model Evaluation Tool (AMET) v1.1 for evaluating meteorological and air quality models, accepted for publication in Environ. Modell. Softw., 2010. 4. Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modelling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23096, 2001. 5. Boccippio, D., Cummings, K., Christian, H., and Goodman, S.: Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States, Mon. Weather Rev., 129, 108–122, 2001.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|